K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

Đáp án C

Phương pháp

Cách giải: Ta có:

là 1 VTPT của mặt phẳng (R).

Vậy phương trình mặt phẳng (R): 

12 tháng 8 2017

Đáp án B.

Suy ra 

mặt khác M ∈ (P) nên ta được

Vậy điểm N luôn thuộc mặt cầu có phương trình 

x - 1 12 2 + y - 1 6 2 + z - 1 6 2 = 1 16

6 tháng 4 2019

Đáp án D.

Từ phương trình tổng quát của mặt phẳng (P) suy ra véc tơ pháp tuyến của mặt phẳng (P) là 

NV
4 tháng 2 2021

Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(2;1;0\right)\)

\(T=MA^2+MB^2+MC^2\)

\(T=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(T=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(T=3MG^2+GA^2+GB^2+GC^2\)

Do \(GA^2+GB^2+GC^2\) cố định nên \(T_{min}\) khi \(MG_{min}\)

\(\Rightarrow M\) là hình chiếu vuông góc của G lên (P)

Gọi (d) là đường thẳng qua G và vuông góc (P) \(\Rightarrow\) pt (d): \(\left\{{}\begin{matrix}x=2+t\\y=1+t\\z=t\end{matrix}\right.\)

M là giao điểm (d) và (P) nên thỏa mãn:

\(2+t+1+t+t=0\Leftrightarrow t=-1\) \(\Rightarrow M\left(1;0;-1\right)\)

22 tháng 2 2019

Đáp án D

Ta  3. 1 - 2. 1 + 4 - 5 = 0 => điểm M thuộc mặt phẳng (P).

27 tháng 8 2019

Đáp án B

Phương trình mặt phẳng (Q)  dạng: x - 2y - 3z + m = 0 (m ≠ 10).

 (Q) đi qua điểm A(2; -1; 0) nên ta  2 + 2 + m = 0 <=> m = -4.

Vậy phương trình mặt phẳng (Q)  x - 2y - 3z -4 = 0 hay -x + 2y + 3z + 4 = 0.

5 tháng 5 2018

Chọn A

Gọi φ  là góc giữa hai mặt phẳng (P) và (Q) 

 

Khi đó

 

25 tháng 4 2017

Đáp án D

Ta có:

 

Do đó  A B → phương với véc tơ  u → = ( 8 ; - 11 ; - 23 )

12 tháng 5 2017

Chọn C

Ta có G(1;0;2), ta tìm hình chiếu của G lên mặt phẳng (P) bằng cách tìm giao điểm của đường thẳng qua G vuông góc với mặt phẳng (P) với mặt phẳng (P).

 

Phương trình đường thẳng qua điểm G và vuông góc với mặt phẳng (P)