Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ

<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

tính thể tích sao vậy

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

9 tháng 4 2017

Xét dãy số (an), ta có a1 = 4.

Giả sử hình vuông cạnh Cn có độ dài cạnh là an. Ta sẽ tính cạnh an+1 của hình vuông Cn+1. Theo hình 9, áp dụng định lí Pi-ta-go, ta có:

an+1 = với n ε N*.

Vậy dãy số (an) là cấp số nhân với số hạng đầu là a1 = 4 và công bội q =



18 tháng 9 2019

2 : cho ab=cd(a,b,c,d0)ab=cd(a,b,c,d≠0) và đôi 1 khác nhau, khác đôi nhau

Chứng minh :

a) C1: Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

\(\frac{a-b}{a+b}=\frac{kb-b}{kb+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\)

\(\frac{c-d}{c+d}=\frac{kd-d}{kd+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}\frac{k-1}{k+1}\)

Bài 1: 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)

Do đó: x=60; y=45; z=40

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

Do đó: x=20; y=30; z=42

Trong các mệnh đề sau đây, mệnh đề nào đúng ? Mệnh đề nào sai ? a) Cho hai đường thẳng a và b song song với nhau. Nếu có một đường thẳng d vuông góc với a thì d vuông góc với b b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song với nhau c) Một mặt phẳng \(\left(\alpha\right)\) và một đường thẳng a cùng vuông góc với đường thẳng b thì a...
Đọc tiếp

Trong các mệnh đề sau đây, mệnh đề nào đúng ? Mệnh đề nào sai ?

a) Cho hai đường thẳng a và b song song với nhau. Nếu có một đường thẳng d vuông góc với a thì d vuông góc với b

b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song với nhau

c) Một mặt phẳng \(\left(\alpha\right)\) và một đường thẳng a cùng vuông góc với đường thẳng b thì a // \(\left(\alpha\right)\)

d) Hai mặt phẳng \(\left(\alpha\right)\) và \(\left(\beta\right)\) phân biệt cùng vuông góc với một mặt phẳng \(\left(\gamma\right)\) thì  \(\left(\alpha\right)\) // \(\left(\beta\right)\)

e) Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song với nhau

f) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song

1
26 tháng 5 2017

a) Đúng

b) Đúng

c) Sai

d) Sai

e) Sai

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song