Trong khoảng thời gian từ τ đến 2τ, vận tốc của một vật dao động điều hòa tăng từ 0,6vma...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

Chọn C

+ v1 > 0; v2 > 0.

+ Ta có: v12 + v22 = (0,6vmax)2 + (0,8vmax)2 = (vmax)2

=> v1 và v2 lệch pha π/2 rad hay: t2 – t1 = τ = T/4 => T = 4τ.

+ 2τ = T/2 => vo (thời điểm t = 0) ngược pha với v2 => vo = -0,8vmax.

Theo hình vẽ thì 

6 tháng 8 2016

Hướng dẫn bạn:

- Lực kéo về: \(F=k.x=0,03\sqrt 2\pi\) (không biết có đúng như giả thiết của bạn không)

\(\Rightarrow x =\dfrac{0,03\sqrt 2\pi}{k}=\dfrac{0,03\sqrt 2\pi}{m.\omega^2}=\dfrac{0,03\sqrt 2\pi}{0,01.\omega^2}=\dfrac{3\sqrt 2\pi}{\omega^2}\)

- Áp dụng: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow 0,05^2=(\dfrac{3\sqrt 2\pi}{\omega^2})^2+\dfrac{(0,4\pi)^2}{\omega^2}\)

Bạn giải pt trên tìm \(\omega \) và suy ra chu kì \(T\) nhé.

 

17 tháng 8 2016

Sử sụng hệ thức: \left ( \frac{i}{I_{0}} \right )^{2}+\left ( \frac{q}{q_{0}} \right )^{2}= 1

Thay số và giải hệ phương trình trìm I0 và q0

Tần số góc: ω  = \frac{I_{0}}{q_{0}} = 50 (rad/s)

3 tháng 3 2017

quay vòng tròn lượng giác rất có ích trong bài này hihi

3 tháng 6 2016

Khi tăng điện dung nên 2.5 lần thì dung kháng giảm 2.5 lần. Cường độ dòng trễ pha hơn hiệu điện thế $\pi/4$ nên

$Z_L-\frac{Z_C}{2.5}=R$

Trường hợp đầu tiên thì thay đổi C để hiệu điện thế trên C cực đại thì $Z_LZ_C=R^2+Z_L^2$

$Z_LZ_C=(Z_L-\frac{Z_C}{2.5})^2+Z_L^2$

Giải phương trình bậc 2 ta được: $Z_C=\frac{5}{4}Z_L$ hoặc $Z_C=10Z_L$(loại vì Zl-Zc/2.5=R<0)

$R=\frac{Z_L}{2}$

Vẽ giản đồ vecto ta được $U$ vuông góc với $U_{RL}$ còn $U_C$ ứng với cạch huyền

Góc hợp bởi U và I bằng với góc hợp bởi $U_L$ và $U_{LR}$

$\tan\alpha=\frac{R}{Z_L}=0.5$

$\sin\alpha=1/\sqrt5$

$U=U_C\sin\alpha=100V$

3 tháng 6 2016

\(U_{C}{max}=\frac{U\sqrt{R^{2}+Z_L^{2}}}{R}\); \(Zc=\frac{R^{2}+Z_L^{2}}{Z_L}\)
khi C2=2,5C1---->Zc2=Zc1/2,5=ZC/2,5
do i trể pha hơn U nên Zl>Zc/2,5
\(\tan\frac{\pi }{4}=\frac{Z_L-0,4Zc}{R}=1\Rightarrow R=Z_L-0,4Z_C\)
\(\Rightarrow Z_C.Z_L=Z_L^{2}+(Z_L-0,4Z_C)^{2}\Rightarrow 2Z_L^{2}-1,8Z_CZ_L+0,16Z_C^{2}=0\Rightarrow Z_L=0,8Z_C;Z_L=0,1Z_C\)(loai)
\(\Rightarrow R=Z_L-1,25.0,4Z_L=0,5Z_L\)
\(\Rightarrow U_{C}{max}=\frac{U\sqrt{Z_L^{2}+0,25Z_L^{2}}}{0,5Z_L}=100\sqrt{5}\Rightarrow U=100V\)

 

31 tháng 5 2016

Do mạch chỉ có L nên u và i luôn vuông pha nhau.

Phương trình của i có dạng:i=I_{0}cos(\omega t-\frac{\pi }{2})=I_{0}sin\omega t  (1)

và Phương trình của i có dạng: u=U_{0}cos\omega t (2)

Từ (1) và (2) suy ra (\frac{i}{I_{0}})^{2}+(\frac{u}{U_{0}})^{2}=1

Ta có hệ :

 

22 tháng 10 2016

\(x=A\sin(\omega t)+A\cos(\omega t)\)

\(=A\sin(\omega t)+A\sin(\omega t+\dfrac{\pi}{2})\)

\(=2A\sin(\omega t+\dfrac{\pi}{4}).\cos \dfrac{\pi}{4}\)

\(=A\sqrt 2\sin(\omega t+\dfrac{\pi}{4})\)

Vậy biên độ dao động là: \(A\sqrt 2\)

Chọn C.

22 tháng 10 2016

thanks nhìu

23 tháng 8 2016

Vận tốc sớm pha hơn gia tốc 1 góc \frac{\pi}{2} (rad)

chọn C

24 tháng 8 2016

\(T=2\pi\sqrt{\frac{\Delta l_0}{9}}=0,4s\)

\(\Rightarrow\Delta l_0=4=\frac{A\sqrt{2}}{2}\)

Thời gian lò xo không giãn là \(t=2t-\frac{A\sqrt{2}}{2}\Rightarrow-A=\frac{T}{4}=0,10\left(s\right)\)

Vậy D đúng

24 tháng 8 2016

Chọn chiều dương hướng xuống dọc theo trục lò xo
Tại vị trí cân bằng ta có: mg = k\Delta l \Rightarrow \frac{k}{m}= \frac{g}{\Delta l}\Rightarrow T = 2 \pi \sqrt{\frac{\Delta l}{g}} = 0,4 s
Trong một chu kì, thời gian lò xo không dãn là thới gian vecto quay từ vị trí:
- \frac{A\sqrt{2}}{2 }\Rightarrow - A \Rightarrow - \frac{A\sqrt{2}}{2}
\Rightarrow t = \frac{T}{8} + \frac{T}{8} = \frac{T}{4} = 0,1 s