Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình bình hành nên ∠ ABC = ∠ ADC.
Mặt khác, BE và DF lần lượt là phân giác của các góc B và D, do đó suy ra ∠ ADF = ∠ CBE
Mặt khác, ta có: AD = CB = b;
∠ DAF = ∠ BCE (so le trong)
Suy ra: △ ADF = △ CBE (g.c.g)
⇒ AF = CE
Đặt AF = CE = x
Theo tính chất của đường phân giác BE trong tam giác ABC, ta có:
Thay số, tính trên máy tính điện tử cầm tay ta được:
a: Xet ΔEAD và ΔEBF có
góc EAD=góc EBF
góc AED=góc BEF
=>ΔEAD đồng dạng với ΔEBF
=>AD/BF=EA/EB
=>18/BF=9/6=3/2
=>BF=12cm
a: M là trung điểm của AB
=>\(MA=MB=\dfrac{AB}{2}\)
mà \(CD=\dfrac{AB}{2}\)
nên MA=MB=CD
Xét tứ giác AMCD có
AM//DC
AM=DC
Do đó: AMCD là hình bình hành
Xét tứ giác DCBM có
DC//BM
DC=BM
Do đó: DCBM là hình bình hành
b: DCBM là hình bình hành
=>DM//CB
=>\(\widehat{AMD}=\widehat{CBM}\)(hai góc đồng vị)
mà \(\widehat{CBM}=\widehat{ECD}\)(hai góc đồng vị, DC//AB)
nên \(\widehat{DMA}=\widehat{ECD}\)
Xét ΔEAB có DC//AB
nên \(\dfrac{ED}{EA}=\dfrac{DC}{AB}=\dfrac{1}{2}\)
=>\(ED=\dfrac{1}{2}EA\)
=>D là trung điểm của EA
=>ED=DA