K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

6 tháng 5 2018

chi oi

ff

12 tháng 4 2017

17 tháng 8 2018

13 tháng 4 2017

Hướng dẫn giải:

∆OAB là tam giác đều có cạnh bằng R = 5,1cm. Áp dụng công thức tính diện tích tam giác đều cạnh a là a2√44 ta có

S∆OBC = SΔOBC=R2√34 (1)

Diện tích hình quạt tròn AOB là:

π.R2.6003600=πR26 (2)

Từ (1) và (2) suy ra diện tích hình viên phân là:

πR26−R2√34=R2(π6−√34)

Thay R = 5,1 ta có Sviên phân ≈ 2,4 (cm2)

17 tháng 4 2017

Giải:

a) Ta có OM, ON lần lượt là tia phân giác cả AOP và BOP

Mà AOP kể bù BOP nên suy ra OM vuông góc với ON.

Vậy ∆MON vuông tại O.

Lại có ∆APB vuông vì có góc vuông (góc nội tiếp chắn nửa cung tròn)

Tứ giác AOPM nội tiếp đường tròn vì có + = 2v. Nên = (cùng chắn cung OP).

Vậy hai tam giác vuông MON à APB đồng dạng vị có cắp góc nhọn bằng nhau.

b)

Tam giác AM = MP, BN = NP (1) (tính chất hai tiếp tuyến cắt nhau)

Tam giác vuông MON có OP là đường cao nên:

MN.PN = OP2 (2)

Từ 1 và 2 suy ra AM.BN = OP2 = R2

c) Từ tam giác MON đồng dạng với tam giác APB ta có :

Khi AM = thi do AM.BN = R2 suy ra BN = 2R

Do đó MN = MP + PN = AM + BN = + 2R =

Suy ra MN2 =

Vậy =

d) Nửa hình tròn APB quay quanh bán kính AB = 2R sinh ra một hình cầu có bán kính R.

Vậy V = πR3

Em kham khảo link này nhé.

Câu hỏi của Trần Đức Thắng - Toán lớp 9 - Học toán với OnlineMath

a, S=82.3,14=200,96(cm2)