K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

+)Xét hai tam giác vuông ABC và XYZ có:

\(\widehat A = \widehat X( = 90^\circ )\) (gt)

AC=XZ (gt)

\(\widehat C = \widehat Z\) (gt)

\( \Rightarrow \Delta ABC = \Delta XYZ\) (g.c.g)

+)Xét hai tam giác vuông DEF và GHK có:

\(EF = HK\) (gt)

\(\widehat {EFD} = \widehat {GKH}\) (gt)

\( \Rightarrow \Delta DEF = \Delta GHK\) (cạnh huyền – góc nhọn)

+)Xét hai tam giác vuông MNP và RTS có:

\(MN = TR\) (gt)

\(\widehat R = \widehat M( = 90^\circ )\) (gt)

\(PM = SR\) (gt)

\( \Rightarrow \Delta MNP = \Delta RTS\) (c.g.c)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a)Xét \(\Delta ABD\) và \(\Delta CDB\) có:

AB=CD (gt)

\(\widehat {ABD} = \widehat {CDB}\) (gt)

BD chung

Vậy \(\Delta ABD = \Delta CDB\)(c.g.c)

b)Xét \(\Delta OAD\) và \(\Delta OCB\) có:

AO=CO (gt)

\(\widehat {AOD} = \widehat {COB}\) (đối đỉnh)

OD=OB (gt)

Vậy \(\Delta OAD = \Delta OCB\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và A’B’C có:

AB=A’B’ (gt)

\(\widehat A = \widehat {A'}\) (gt)

AC=A’C’ (gt)

\( \Rightarrow \Delta ABC = \Delta A'B'C'\)(c.g.c)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta thấy tam giác MNQ = tam giác MPQ (c-c-c)

b) Ta thấy tam giác GHK  = tam giác GIK (c-g-c)

c) Ta thấy tam giác ADB = tam giác ACE (g-c-g)

    Tam giác ADC = tam giác AEB (g-c-g)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

+) Xét \(\Delta{ABD}\) vuông tại B và \(\Delta{ACD}\) vuông tại D có:

AD chung

\(\widehat {BAD} = \widehat {DAC}\) (gt)

\( \Rightarrow \Delta{ABD}=\Delta{ACD}\) (cạnh huyền – góc nhọn)

\( \Rightarrow \) BD = CD, AB = AC ( 2 cạnh tương ứng)

\( \widehat {BDA} = \widehat {ADC}\)( 2 góc tương ứng)

+) Xét \(\Delta{BED}\) vuông tại B và \(\Delta{CHD}\) vuông tại C có:

BD = CD (cmt)

\(\widehat {BDE} = \widehat {CDH}\)( 2 góc đối đỉnh )

\( \Rightarrow \Delta{BED}=\Delta{CHD \) (cạnh góc vuông - góc nhọn kề )

+) Ta có: \(\widehat {BDA} + \widehat {BDE}\)= \(\widehat {ADE}\)

                \(\widehat {ADC} + \widehat {CDH}\)= \(\widehat {ADH}\)

Mà \(\widehat {BDA} = \widehat {ADC}\), \(\widehat {BDE} = \widehat {CDH}\)

\( \Rightarrow \widehat {ADE} = \widehat {ADH}\)

Xét \(\Delta{ADE}\) và \(\Delta{ADH}\) có:

\(\widehat {BAD} = \widehat {DAC}\) (gt)

AD chung

\(\widehat {ADE} = \widehat {ADH}\) (cmt)

\( \Rightarrow \Delta{ADE}=\Delta{ADH}\)( g – c – g )

+) Xét \(\Delta{ABH}\) vuông tại B và \(\Delta{ACE}\) vuông tại C có:

AB = AC (cmt)

\(\widehat {BAH}\) chung

\( \Rightarrow \Delta{ABH}=\Delta{ACE}\) (cạnh góc vuông – góc nhọn kề)

7 tháng 3 2023

△ABC = △ADC (c.c.c) vì

AB = CD

AD = BC

AC chung

7 tháng 3 2023

\(\Delta ABC=\Delta ADC\left(c.c.c\right)\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a)      Xét 2 tam giác vuông ABC và ADC có:

\(\widehat {ACB} = \widehat {ACD}( = 90^\circ )\)

AC chung

\(\widehat {BAC} = \widehat {DAC}\)(gt)

=>\(\Delta ABC = \Delta ADC\)(g.c.g)

b) Xét 2 tam giác vuông HEG và GFH có:

HE=GF(gt)

HG chung

=>\(\Delta HEG = \Delta GFH\)(cạnh huyền - cạnh góc vuông)

c) Xét 2 tam giác vuông QMK và NMP có:

QK=NP(gt)

\(\widehat K = \widehat P\)(gt)

=>\(\Delta QMK = \Delta NMP\)(cạnh huyền – góc nhọn)

d) Xét 2 tam giác vuông VST và UTS có:

VS=UT(gt)

ST chung

=>\(\Delta VST = \Delta UTS\)(2 cạnh góc vuông)

Vì \(\widehat{BAE}=\widehat{CDE}=90^0 (gt)\) 

`->` Tam giác `ABE` vuông tại `A,` Tam giác `ECD` vuông tại `D.`

Xét Tam giác `ABE:`\(\widehat{A}=90^0\) `->` 2` góc \(\widehat{B}\) và \(\widehat{E}\) phụ nhau

`->`\(\widehat{ABE}+\widehat{AEB}=90^0\) `->`\(\widehat{ABE}=90^0-\widehat{AEB}\) 

Xét Tam giác `DEC:`\(\widehat{D}=90^0\) `->` \(\widehat{E}\) và \(\widehat{C}\) phụ nhau

`->`\(\widehat{DCE}+\widehat{DEC}=90^0\) `->`\(\widehat{DCE}=90^0-\widehat{DEC}\)

Mà \(\widehat{AEB}=\widehat{DEC}\) `(2` góc đối đỉnh `)`

`->`\(90^0-\widehat{DEC}=90^0-\widehat{AEB}\) `->`\(\widehat{ABE}=\widehat{DCE}\)

Xét Tam giác `DEC` và Tam giác `AEB:`

`AB=CD`

\(\widehat{ABE}=\widehat{DCE}\) 

`=>` Tam giác `DEC =` Tam giác `AEB (cgv-gn)` 

7 tháng 3 2023

\(\Delta AEB=\Delta DEC\left(g.c.g\right)\)