Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
– Các vectơ cùng phương:
a→ và b→ cùng phương
u→ và v→ cùng phương
x→, y→, w→ và z→ cùng phương.
– Các vectơ cùng hướng:
a→ và b→ cùng hướng
x→, y→ và z→ cùng hướng
– Các vectơ ngược hướng:
u→ và v→ ngược hướng
w→ ngược hướng với các vec tơ x→, y→ và z→
– Các vectơ bằng nhau: x→ = y→
+ Các cặp vectơ cùng hướng là: \(\overrightarrow a \) và \(\overrightarrow b \); \(\overrightarrow u \) và \(\overrightarrow v \)
+ Các cặp vectơ ngược hướng là: \(\overrightarrow x \) và \(\overrightarrow y \)
+ Các cặp vectơ bằng nhau là: \(\overrightarrow u \) và \(\overrightarrow v \)
Hai vectơ \(\overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng: có giá song song và cùng hướng với nhau.
Hai vectơ \(\overrightarrow a \) và \(\overrightarrow x \) ngược hướng: có giá song song và ngược hướng với nhau.
Vectơ \(\overrightarrow z \) có giá song song với giá của vectơ \(\overrightarrow a \), ngược hướng với vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow z \) ngược hướng với nhau.
Vectơ \(\overrightarrow y \) có giá song song với giá của vectơ \(\overrightarrow a \), cùng hướng với vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow y \) cùng hướng với nhau.
Vectơ \(\overrightarrow b \) có giá không song song với giá của vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương với nhuau. Do vậy không xét chúng cùng hướng hay ngược hướng với nhau.
a) Gọi Δ1, Δ2, Δ3 lần lượt là giá của ba vectơ a→, b→, c→
+ Vectơ a cùng phương với vectơ c ⇒ Δ1 //≡ Δ3
+ Vectơ b cùng phương với vectơ c ⇒ Δ2 //≡ Δ3
⇒ Δ1 //≡ Δ2
⇒ Vectơ a→ cùng phương với b→ (theo định nghĩa).
b) a→, b→ cùng ngược hướng với c→
⇒ a→, b→ đều cùng phương với c→
⇒ a→ và b→ cùng phương.
⇒ a→ và b→ chỉ có thể cùng hướng hoặc ngược hướng.
Mà a→ và b→ đều ngược hướng với c→ nên a→ và b→ cùng hướng.
Dễ thấy giá của \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) song song với nhau.
Các vecto cùng phương là: \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)
Trong đó cặp vecto cùng hướng là \(\overrightarrow a ,\overrightarrow c \).
Cặp vecto ngược hướng là: \(\overrightarrow a ,\overrightarrow b \) và \(\overrightarrow b ,\overrightarrow c \).
Cặp vecto bằng nhau là: \(\overrightarrow a ,\overrightarrow c \)
Nhận xét: giá của 4 lực đều song song hoặc trùng nhau, do đó 4 vecto là cùng phương.
Vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) có chiều từ phải sang trái còn vectơ \(\overrightarrow d \) có chiều từ trái sang phải
Vậy các vectơ (hay lực) cùng hướng với nhau là vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \).
Các vectơ (lực) \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) ngược hướng với vectơ \(\overrightarrow d \).
a) Ta có:
Giá của vectơ \(\overrightarrow {\rm{w}} \) trùng với giá của \(\overrightarrow x \)
Giá của vectơ \(\overrightarrow y \), \(\overrightarrow z \)song song với giá của \(\overrightarrow x \)
Suy ra các vectơ cùng phương với vectơ \(\overrightarrow x \) là \(\overrightarrow {\rm{w}} \), \(\overrightarrow y \)và \(\overrightarrow z \)
b) Ta có:
Vectơ \(\overrightarrow b \) có giá song song với vectơ \(\overrightarrow a \)và có cùng hướng từ trên xuống với vectơ \(\overrightarrow a \)nên vectơ \(\overrightarrow b \) cùng hướng với vectơ \(\overrightarrow a \)
c) Ta có:
Vectơ \(\overrightarrow v \) có giá song song với vectơ \(\overrightarrow u \)và ngược hướng từ dưới lên trên so với vectơ \(\overrightarrow u \)nên vectơ \(\overrightarrow v \) ngược hướng với vectơ \(\overrightarrow u \)
a) Đúng
Giải thích: Nhận thấy a→ = -3.i→
Vì –3 < 0 nên a→ và i→ ngược hướng.
b) Đúng.
Giải thích:
⇒ a→ = -b→ nên a→ và b→ là hai vec tơ đối nhau.
c) Sai
Giải thích:
⇒ a→ ≠ -b→ nên a→ và b→ không phải là hai vec tơ đối nhau.
d) Đúng
Nhận xét SGK : Hai vec tơ bằng nhau khi và chỉ khi chúng có hoành độ bằng nhau và tung độ bằng nhau.
– Các vectơ cùng phương: và ; , , và ; và .
– Các vectơ cùng hướng: và ; , ,
– Các vectơ ngược hướng: và ; và ; và ; và .
– Các vectơ bằng nhau: = .