Trong hình 1:  góc 𝐶3 và góc 𝐷1là hai...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

Ta có:

\(\widehat{D_1}-\widehat{D_2}=4^0\Rightarrow\widehat{D_1}=4+\widehat{D_2}\)             (1)

Ta lại có:    \(\widehat{D_1}+\widehat{D_2}=180^0\)                  (2)

thế (1) vào (2), ta được:

  \(\widehat{D_1}+\widehat{D_2}=180^0\)

\(\Rightarrow4^0+\widehat{D_2}+\widehat{D_2}=180^0\)

\(\Rightarrow4+2.\widehat{D_2}=180^0\) 

\(\Rightarrow\widehat{D_2}=88^0\)

\(\Rightarrow\widehat{D_1}=88+4=92^0\)

\(\Rightarrow\widehat{E_4}=92^0\)

8 tháng 9 2016

Do góc D1-D2=4 dộ

   Mà D1+D2=180 độ

=> D1=92 độ

Vì D1=EDb=92 độ( đối đỉnh)

Mà c//b=> EDb=E4=92 độ

Đáp số : ^E4=92 độ

 

27 tháng 4 2017

Cho mình sửa : K(-1).K(-2)\(\le\)0

3 tháng 4 2020

a) Với x1 = x2 = 1 

\(\Rightarrow f\left(1\right)=f\left(1.1\right)\) 

\(\Rightarrow f\left(1\right)=f\left(1\right).f\left(1\right)\) 

\(\Rightarrow f\left(1\right).f\left(1\right)-f\left(1\right)=0\) 

\(\Rightarrow f\left(1\right).\left[f\left(1\right)-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\) 

Mà \(f\left(x\right)\ne0\) ( với mọi \(x\in R\) \(;\) \(x\ne0\) )

\(\Rightarrow f\left(1\right)\ne0\)

\(\Rightarrow f\left(1\right)-1=0\) 

\(\Rightarrow f\left(1\right)=1\)

b) Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)

\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)

\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=1\)

\(\Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)

\(\Rightarrow f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\) 

22 tháng 11 2019

Bài 1:

Ta có: \(\frac{a}{b}=\frac{b}{d}.\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+d^2}\) (1).

Lại có:

\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\left(đpcm\right).\)

Chúc bạn học tốt!

23 tháng 7 2019

1.

Ta có: \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)

\(\Rightarrow\frac{1}{2}a.\frac{1}{6}=\frac{2}{3}b.\frac{1}{6}=\frac{3}{4}c.\frac{1}{6}\)

\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)

\(\Rightarrow\hept{\begin{cases}a=5.12=60\\b=5.9=45\\c=5.8=40\end{cases}}\)

Vậy \(\hept{\begin{cases}a=60\\b=45\\c=40\end{cases}}\)

23 tháng 7 2019

2.  Đặt \(a_1+a_2+...+a_n=d\)

ÁP dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_n}=\frac{c}{d}\)

\(\Rightarrow x_1=\frac{c}{d}.a_1;x_2=\frac{c}{d}.a_2;....;x_n=\frac{c}{d}.a_n\)

8 tháng 8 2015

Áp dụng dãy tỉ sô bàng nhau ta có : 

       \(\frac{a1-1}{9}=\frac{a2-2}{8}=....=\frac{a9-9}{1}=\frac{a1-1+a2-2+..+a9-9}{9+8+...+1}\)

   \(=\frac{\left(a1+a2+..+a9\right)-\left(1+2+..+9\right)}{1+2+..+9}=\frac{90-45}{45}=1\)

=>a1 - 1 = 9 => a1 = 10 

=> a2- 2 = 8 => a2 = 10 

=> a3 - 3 = 7 => a3 = 10

.......................

=> a9 - 9 = 1 => a9 = 10 

Vậy a1 = a2 = ...=a9 = 10 

8 tháng 8 2015

Áp dụng tính chất dãy tỉ số bằng nhau:

kết quả:a1=a2=....=a9=10

\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1+a2+a3+....+a9-45}{45}=\frac{45}{45}=1\)
 

21 tháng 8 2022

vô nghiệm nhớ