Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:
\(\widehat{D_1}-\widehat{D_2}=4^0\Rightarrow\widehat{D_1}=4+\widehat{D_2}\) (1)
Ta lại có: \(\widehat{D_1}+\widehat{D_2}=180^0\) (2)
thế (1) vào (2), ta được:
\(\widehat{D_1}+\widehat{D_2}=180^0\)
\(\Rightarrow4^0+\widehat{D_2}+\widehat{D_2}=180^0\)
\(\Rightarrow4+2.\widehat{D_2}=180^0\)
\(\Rightarrow\widehat{D_2}=88^0\)
\(\Rightarrow\widehat{D_1}=88+4=92^0\)
\(\Rightarrow\widehat{E_4}=92^0\)
Do góc D1-D2=4 dộ
Mà D1+D2=180 độ
=> D1=92 độ
Vì D1=EDb=92 độ( đối đỉnh)
Mà c//b=> EDb=E4=92 độ
Đáp số : ^E4=92 độ

a) Với x1 = x2 = 1
\(\Rightarrow f\left(1\right)=f\left(1.1\right)\)
\(\Rightarrow f\left(1\right)=f\left(1\right).f\left(1\right)\)
\(\Rightarrow f\left(1\right).f\left(1\right)-f\left(1\right)=0\)
\(\Rightarrow f\left(1\right).\left[f\left(1\right)-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\)
Mà \(f\left(x\right)\ne0\) ( với mọi \(x\in R\) \(;\) \(x\ne0\) )
\(\Rightarrow f\left(1\right)\ne0\)
\(\Rightarrow f\left(1\right)-1=0\)
\(\Rightarrow f\left(1\right)=1\)
b) Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)
\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)
\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=1\)
\(\Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)
\(\Rightarrow f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\)

Bài 1:
Ta có: \(\frac{a}{b}=\frac{b}{d}.\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+d^2}\) (1).
Lại có:
\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\left(đpcm\right).\)
Chúc bạn học tốt!

1.
Ta có: \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Rightarrow\frac{1}{2}a.\frac{1}{6}=\frac{2}{3}b.\frac{1}{6}=\frac{3}{4}c.\frac{1}{6}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.12=60\\b=5.9=45\\c=5.8=40\end{cases}}\)
Vậy \(\hept{\begin{cases}a=60\\b=45\\c=40\end{cases}}\)
2. Đặt \(a_1+a_2+...+a_n=d\)
ÁP dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_n}=\frac{c}{d}\)
\(\Rightarrow x_1=\frac{c}{d}.a_1;x_2=\frac{c}{d}.a_2;....;x_n=\frac{c}{d}.a_n\)

Áp dụng dãy tỉ sô bàng nhau ta có :
\(\frac{a1-1}{9}=\frac{a2-2}{8}=....=\frac{a9-9}{1}=\frac{a1-1+a2-2+..+a9-9}{9+8+...+1}\)
\(=\frac{\left(a1+a2+..+a9\right)-\left(1+2+..+9\right)}{1+2+..+9}=\frac{90-45}{45}=1\)
=>a1 - 1 = 9 => a1 = 10
=> a2- 2 = 8 => a2 = 10
=> a3 - 3 = 7 => a3 = 10
.......................
=> a9 - 9 = 1 => a9 = 10
Vậy a1 = a2 = ...=a9 = 10
Áp dụng tính chất dãy tỉ số bằng nhau:
kết quả:a1=a2=....=a9=10
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1+a2+a3+....+a9-45}{45}=\frac{45}{45}=1\)
Hình đâu bạn ?
Phải có hình để mọi người mới trả lời được câu hỏi của bạn chứ !