K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

\(a,\) \(\left(d\right)\) cắt Ox tại A nên \(x=0\Rightarrow y=2\cdot0-2=-2\Rightarrow A\left(0;-2\right)\)

\(\left(d\right)\) cắt Oy tại B nên \(y=0\Rightarrow2x-2=0\Rightarrow x=1\Rightarrow B\left(1;0\right)\)

Từ đó ta được \(OA=2;OB=1\)

Gọi H là chân đường vuông góc từ O đến \(\left(d\right)\)

Áp dụng HTL:

\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{2}+\dfrac{1}{1}\\ \Rightarrow\dfrac{1}{OH^2}=\dfrac{3}{2}\Rightarrow OH^2=\dfrac{3}{2}\Rightarrow OH=\dfrac{\sqrt{6}}{2}\)

\(b,S_{AOB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot1\cdot2=1\left(đvdt\right)\) 

2 tháng 8 2015

\(a\text{) Gọi }M\left(m;m^2\right)\in P\)

\(d\left(M;Ox\right)=d\left(M;Oy\right)\Leftrightarrow\left|x_M\right|=\left|y_M\right|\)\(\Leftrightarrow\left|m\right|=\left|m^2\right|\Leftrightarrow m^2=m\text{ hoặc }m^2=-m\)

\(\Leftrightarrow m^2-m=0\text{ hoặc }m^2+m=0\)

\(\Leftrightarrow m=0\text{ hoặc }m=1\text{ hoặc }m=-1\)

\(\text{Kết luận: }M\left(0;0\right)\text{ hoặc }M\left(1;1\right)\text{ hoặc }M\left(-1;1\right)\)

\(b\text{) }A\in d\Rightarrow a+b=1\text{ (1)}\)

\(\text{Phương trình hoành độ giao điểm của }P\text{ và }d\text{ là: }x^2=ax+b\)

\(\Leftrightarrow x^2-ax-b=0\text{ (*)}\)

\(d\text{ là tiếp tuyến của }P\Leftrightarrow d\text{ giao }P\text{ tại 1 điểm duy nhất }\Leftrightarrow\left(\text{*}\right)\text{ có nghiệm kép }\)

\(\Leftrightarrow\Delta=a^2+4b=0\text{ (2)}\)

\(\left(1\right)\Leftrightarrow b=1-a;\text{ thay vào (2) ta được: }a^2+4\left(1-a\right)=0\)

\(\Leftrightarrow a^2-4a+4=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a=2\)

\(\Rightarrow b=-1\)

\(\text{Vậy }a=2;\text{ }b=-1\)

 

8 tháng 12 2021

Gọi \(\left(d\right):y=ax+b\) là đt của (d)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne\sqrt{3}\\b=1\end{matrix}\right.\Leftrightarrow\left(d\right):y=2x+1\Leftrightarrow2x-y+1=0\)

Khoảng cách từ K đến (d) là \(d\left(K;d\right)=\dfrac{6\cdot1-1+1}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)

15 tháng 11 2020

Phương trình hoành độ giao điểm của (P) và (d):

x2 + 2x -m2 + 1 = 0 

Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0

Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)\(\in\varnothing\)

loading...  loading...  

15 tháng 8 2023

thank you so much  limdimhaha

1 tháng 9 2023

* Giao điểm với trục Ox:

Ta có: -2x + 3 = 0

⇔ 2x = 3

⇔ x = 3/2

⇒ A(3/2; 0) là giao điểm với trục Ox

* Giao điểm với trục Oy:

x = 0 ⇔ y = 3

⇒ B(0; 3) là giao điểm với trục Oy

* Khoảng cách từ O(0; 0) tới (d):

Xét đồ thị:

loading... Ta có:

AB² = OA² + OB² (Pytago)

= (3/2)² + 3²

= 45/4

⇒ AB = 3√5/2

Khoảng cách từ O đến (d) là đoạn thẳng OH

Ta có:

OH.AB = OA.OB

⇒ OH = OA.OB : AB

= 3/2 . 3 : (3√5/2)

= 3/√5

1 tháng 9 2023

khoảng cách là \(\dfrac{3}{\sqrt{5}}\)