Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: (d): y=ax+b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)
b: Tọa độ giao của (d1) và (d2) là:
2/5x+1=-x+4 và y=-x+4
=>7/5x=3và y=-x+4
=>x=15/7 và y=-15/7+4=13/7
Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)
nên ta có hệ:
15/7a+b=13/7 và 1/2a+b=-1/4
=>a=59/46; b=-41/46
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5.
Bài giải:
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5
Lời giải:
Vì đường thẳng $OA$ đi qua gốc tọa độ nên gọi PTĐT $OA$ là \(y=cx\)
Vì \(A(\sqrt{2},1)\) nên \(1=\sqrt{2}c\Rightarrow c=\frac{1}{\sqrt{2}}\)
Do đó PTĐT \(OA\) là \(y=\frac{x}{\sqrt{2}}\)
Đường thẳng \(y=ax+b\) song song với $OA$ nên \(a=c=\frac{1}{\sqrt{2}}\)
Mà đường thẳng trên cắt trục tung tại tung độ \(-2\) nên:
\(-2=\frac{1}{\sqrt{2}}.0+b\rightarrow b=-2\)
Vậy \((a,b)=\left (\frac{1}{\sqrt{2}},-2\right)\)
Lời giải:
Vì đường thẳng $OA$ đi qua gốc tọa độ nên gọi PTĐT $OA$ là \(y=cx\)
Vì \(A(\sqrt{2},1)\) nên \(1=\sqrt{2}c\Rightarrow c=\frac{1}{\sqrt{2}}\)
Do đó PTĐT \(OA\) là \(y=\frac{x}{\sqrt{2}}\)
Đường thẳng \(y=ax+b\) song song với $OA$ nên \(a=c=\frac{1}{\sqrt{2}}\)
Mà đường thẳng trên cắt trục tung tại tung độ \(-2\) nên:
\(-2=\frac{1}{\sqrt{2}}.0+b\rightarrow b=-2\)
Vậy \((a,b)=\left (\frac{1}{\sqrt{2}},-2\right)\)
em chưa học lớp 9
mình cũng chưa học