Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình đường thẳng d có dạng: , với t ∈ R.
b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương
(1 ; 1 ; -1) vì là vectơ pháp tuyến của (α).
Do vậy phương trình tham số của d có dạng:
c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆ nên cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:
d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương
(4 ; 2 ; -1) nên phương trình tham số có dạng:
a.
Chọn \(C\left(1;1;1\right)\) là 1 điểm thuộc denta
\(\Rightarrow\overrightarrow{AC}=\left(0;-1;4\right)\)
Đường thẳng denta có \(\overrightarrow{u_{\Delta}}=\left(2;-1;1\right)\) là 1 vtcp
\(\Rightarrow\left[\overrightarrow{AC};\overrightarrow{u_{\Delta}}\right]=\left(3;8;2\right)\)
\(\Rightarrow\left(Q\right)\) nhận \(\left(3;8;2\right)\) là 1 vtpt
Phương trình (Q):
\(3\left(x-1\right)+8\left(y-2\right)+2\left(y+3\right)=0\)
b.
Mặt phẳng (P) nhận \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) là 1 vtpt
Ta có: \(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-2;-1;3\right)\)
Mặt phẳng (Q) nhận (2;1;-3) là 1 vtpt
Phương trình (Q):
\(2\left(x-1\right)+1\left(y-2\right)-3\left(z+3\right)=0\)
c.
Gọi M là giao điểm denta và (P) thì tọa độ M thỏa:
\(-1+2t+2-t+t-3=0\Rightarrow t=1\)
\(\Rightarrow M\left(1;1;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{\Delta}}\right]=\left(2;1;-3\right)\)
Đường thẳng d nhận (2;1;-3) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-3t\end{matrix}\right.\)
d.
Do M thuộc denta nên tọa độ có dạng: \(M\left(-1+2t;2-t;t\right)\)
M là trung điểm AN \(\Rightarrow N\left(-3+4t;2-2t;2t+3\right)\)
N thuộc (P) nên: \(-3+4t+2-2t+2t+3-3=0\Rightarrow t=\dfrac{1}{4}\)
\(\Rightarrow\overrightarrow{MN}=\left(-2+2t;-t;t+3\right)=\left(-\dfrac{3}{2};-\dfrac{1}{4};\dfrac{13}{4}\right)=-\dfrac{1}{4}\left(6;1;13\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=1+6t\\y=2+t\\z=-3+13t\end{matrix}\right.\)
Để tìm phương trình đường thẳng Δm, ta thay các giá trị của x, y, z vào phương trình của Δm:
x = 1 - m + (m - 1)t
y = 3 - m + (m + 1)t
z = m - mt
Thay A(5, 3, 1) vào phương trình của Δm:
5 = 1 - m + (m - 1)t
3 = 3 - m + (m + 1)t
1 = m - mt
Từ đó, ta có hệ phương trình:
4 = (m - 1)t
0 = 2t
-4 = 2mt
Giải hệ phương trình này, ta được t = 0 và m = 1.
Thay t = 0 và m = 1 vào phương trình của Δm, ta có:
x = 1 - 1 + (1 - 1) * 0 = 0
y = 3 - 1 + (1 + 1) * 0 = 2
z = 1 - 1 * 0 = 1
Vậy phương trình đường thẳng Δm là:
x = 0
y = 2
z = 1
Do đó, đáp án là A.
Đừng để phải nói ra toàn bộ các câu bạn trả lời, thậm chí có cả GP đều được bạn chép chatgpt đấy .
1/ \(\overrightarrow{AI}=\left(1;1;-3\right)\)
Do (P) tiếp xúc với (S) tại A \(\Rightarrow AI\perp\left(P\right)\Rightarrow\left(P\right)\) nhận \(\overrightarrow{AI}\) là một vtpt
\(\Rightarrow\) phương trình (P):
\(1\left(x-2\right)+1\left(y-1\right)-3\left(z-2\right)=0\Leftrightarrow x+y-3z+3=0\)
2/ \(\overrightarrow{u_d}=\left(2;-1;4\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;0;0\right)\)
Gọi A là giao điểm của d và (P) có pt \(x+3=0\)
\(\Rightarrow x_A=-3\) (suy từ pt (P)); \(y_A=-3;z_A=-5\) (thay \(x_A\) vào pt d) \(\Rightarrow A\left(-3;-3;-5\right)\)
Gọi (Q) là mặt phẳng qua d và vuông góc (P) \(\Rightarrow\left(Q\right)\) chứa A và (Q) có 1 vtpt là \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{u_d};\overrightarrow{n_{\left(P\right)}}\right]=\left(0;4;1\right)\)
\(\Rightarrow\) pt (Q): \(0\left(x+3\right)+4\left(y+3\right)+1\left(z+5\right)=0\Leftrightarrow4y+z+17=0\)
Gọi \(d'\) là hình chiếu của d lên (P) \(\Rightarrow\) \(d'\)có một vecto chỉ phương là \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]=\left(0;-1;4\right)\) và \(d'\) qua A
\(\Rightarrow\) pt đường thẳng \(d':\) \(\left\{{}\begin{matrix}x=-3+0.t\\y=-3+\left(-1\right).t\\z=-5+4.t\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-3-t\\z=-5+4t\end{matrix}\right.\) (1)
Đến đây thì đừng bối rối vì không thấy đáp án, vì việc viết pt tham số của đường thẳng sẽ ra các kết quả khác nhau khi ta chọn điểm khác nhau (một đường thẳng chứa vô số điểm vì thế cũng có vô số cách viết 1 pt tham số của đường thẳng)
Kiểm tra đáp án chính xác bằng cách loại trừ, đầu tiên nhìn vào vecto chỉ phương \(\left(0;-1;4\right)\) \(\Rightarrow\) loại đáp án B và C
Đáp án A họ sử dụng điểm có tọa độ \(\left(-3;-5;-3\right)\) để viết, thay thử 3 tọa độ này vào hệ (1), dòng 2 cho \(-5=-3-t\Rightarrow t=2\) ; dòng 3 cho \(-3=-5+4t\Rightarrow t=\dfrac{1}{2}\ne2\). Vậy A sai nốt, D là đáp án đúng (bạn có thể thay tạo độ \(\left(-3;-6;7\right)\) vào (1) sẽ thấy đúng)
3/ Gọi \(d\) đi qua A vuông góc \(\left(P\right)\)
Ta có \(\overrightarrow{n_{\left(P\right)}}=\left(1;3;-1\right)\Rightarrow\) chọn \(\overrightarrow{u_d}=\overrightarrow{n_{\left(P\right)}}=\left(1;3;-1\right)\) là 1vecto chỉ phương của d
\(\Rightarrow\) pt tham số d có dạng: \(\left\{{}\begin{matrix}x=2+t\\y=3+3t\\z=-t\end{matrix}\right.\) (2)
Lại giống câu trên, họ chọn 1 điểm khác để viết, nhưng câu này thì loại trừ đơn giản hơn vì chi có đáp án B là đúng vecto chỉ phương, chọn luôn ko cần suy nghĩ
Nếu ko tin, thay thử điểm \(\left(1;0;1\right)\) trong câu B vào (2)
Dòng 1 cho \(1=2+t\Rightarrow t=-1\)
Dòng 2 cho \(0=3+3t\Rightarrow t=-1\)
Dòng 3 cho \(1=-t\Rightarrow t=-1\)
3 dòng cho 3 giá trị t giống nhau, vậy điểm đó thuộc d \(\Rightarrow\) đáp án đúng