Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy đây là dạng tổng tỉ :
Vì tổng phải chia hết cho 2 + 7 = 9 ( phần ) nên phải có 81 người vì 81 chia hết cho 9
Ta có sơ đồ :
Nam : |---|---|
Nữ : |---|---|---|---|---|---|---| Tổng : 81 người
Số nữ là :
81 : ( 2 + 7 ) x 7 = 63 ( người )
Số nam là :
81 - 63 = 18 ( người )
Đ/s : 18 nam
63 nữ
Gọi số tự nhiên cần tìm có dạng là ab(Điều kiện: \(a,b\in Z^+\); \(0< a< 10\); \(0< b< 10\))
Vì tổng các chữ số của nó bằng 10 nên ta có phương trình: a+b=10(1)
Vì khi số ấy viết theo thứ tự ngược lại thì số ấy giảm 36 đơn vị nên ta có phương trình:
\(10b+a=10a+b-36\)
\(\Leftrightarrow10b+a-10a-b=-36\)
\(\Leftrightarrow-9a+9b=-36\)
\(\Leftrightarrow a-b=4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=10\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=6\\a-b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=4+b\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4+3=7\\b=3\end{matrix}\right.\)
Vậy: Số cần tìm là 73
a) Có A4100 = 94109400 kết quả có thể.
b) Nếu giải nhất đã xác định thì 3 giải nhì,ba,tư rơi vào 99 người còn lại. Vậy có A399 = 941094 kết quả có thể.
c) Người giữ vé số 47 có 4 khả năng trúng 1 trong 4 giải. Sau khi xác định giải của người này thì 3 giải còn lại rơi vào 99 người không giữ vé số 47. Vậy theo quy tắc nhân có 4.A399 = 3764376 kết quả có thể.
a) Có A4100 = 94109400 kết quả có thể.
b) Nếu giải nhất đã xác định thì 3 giải nhì,ba,tư rơi vào 99 người còn lại. Vậy có A399 = 941094 kết quả có thể.
c) Người giữ vé số 47 có 4 khả năng trúng 1 trong 4 giải. Sau khi xác định giải của người này thì 3 giải còn lại rơi vào 99 người không giữ vé số 47. Vậy theo quy tắc nhân có 4.A399 = 3764376 kết quả có thể.
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có:
a+b=10 và 10b+a-10a-b=36
=>a+b=10 và -9a+9b=36
=>a+b=10 và a-b=-4
=>a=3 và b=7
\(5^{100}=\left(5^{10}\right)^{10}5^{99}=\left(5^{33}\right)^3>\left(10^{23}\right)^3=10^{69}\). Suy ra 5100 có 70 chữ số trở lên
Vậy \(5^{100}\) có 70 chữ số
70 chữ số