Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mạch (R,L,C) có \(U_R=U_L=U_C=20V.\)
=> \(R=Z_L.\)
\(U=\sqrt{U_R^2+(U_L-U_C)^2} = 20V.\)
Khi nối tắt tụ điện thì tụ điện trở thành dây dẫn. Mạch chỉ còn (R,L) có \(R=Z_L=> U_R=U_L.\)
Lại có U = 20 V = const => \(\sqrt{U_R^2+U_L^2} = 20=> U_R=U_L = 10\sqrt{2}.\)
Đáp án B. \(10\sqrt{2}V.\)
\(Z_L=\omega L=100\Omega\)
Biến trở R thay đổi để \(P_R\) max khi \(R=Z_L\)
\(\Rightarrow R=100\Omega\)
Cường độ dòng điện: \(I=\frac{U}{Z}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{100\sqrt{2}}{\sqrt{100^2+100^2}}=1A\)
Gọi $R_0,Z_L,Z_C$ là các thông số của quạt
Theo bài ra ta có $P_{đm}=120 W $, Dòng điện định mức của quạt là $I$
Gọi $R_2$ là giá trị của biến trở khi quạt hoạt động bình thường khi $U=220V$
Khi $R_1=70.\Omega $ thì $I_1=0,75 A,P_1=0,928P=111,36W$
$P_1=I_1^2.R_0$
$\Rightarrow R_0=\dfrac{P_1}{I_1^2}=198\Omega $
Ta có $I_1=\dfrac{U}{Z_1}=\dfrac{U}{\sqrt{\left(R_0+R_1\right)^2+\left(Z_L-Z_C\right)^2}}=\dfrac{220}{\sqrt{268^2+\left(Z_L-Z_C\right)^2}}$
$\Rightarrow \left(Z_L-Z_C\right)^2=119^2$
Ta lại có
$P=I^2.R_0$
Với $I=\dfrac{U}{Z}=\dfrac{U}{\sqrt{\left(R_0+R_1\right)^2+\left(Z_L-Z_C\right)^2}}$
$\Rightarrow P=\dfrac{U^2}{\left(R_0+R_2\right)^2+\left(Z_L-Z_C\right)^2}$
$\Rightarrow R_0+R_2=256\Omega $
$\Rightarrow R_2=58\Omega $
$R_2 < R_1$
$\Rightarrow \Delta. R=R_1-R_2=12\Omega $
Ta áp dụng điều kiện vuông pha với 2 đoạn mạch u1 và u2.
Khi đó: \(\tan\varphi_1.\tan\varphi_2=-1\)
\(\Leftrightarrow\frac{Z_L}{R}.\frac{Z_L-Z_C}{R}=-1\)
\(\Leftrightarrow R^2=Z_L\left(Z_C-Z_L\right)\)
Theo giả thiết ta thấy: \(U_d^2=U^2+U_C^2\left(=2U_C^2\right)\)
nên u vuông pha với uC --- > u cùng pha với i và ud lệch pha 1 góc < 90o so với i (bạn có thể vẽ giản đồ véc tơ để kiểm tra lại)
--->Trong mạch đang xảy ra cộng hưởng và cuộn dây có điện trở thuần
---->Đáp án C
Đáp án C