Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tiền 7A,7B,7C lần lượt là a,b,c(đồng;a,b,c>0)
Áp dụng tc dtsbn:
\(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{9}=\dfrac{b-a}{6-5}=\dfrac{35000}{1}=35000\\ \Rightarrow\left\{{}\begin{matrix}a=175000\\b=210000\\c=315000\end{matrix}\right.\)
Vậy...
Gọi số tiền quyên góp của 3 lớp 7A, 7B, 7C lần lượt là a,b,ca,b,c.
KHi đó ta có
a5=b6=c9a5=b6=c9
và b−a=35.000b−a=35.000
Áp dụng tính chất dãy tỉ số bằng nhau ta có
a5=b6=c9=b−a6−5=35.0001=35.000a5=b6=c9=b−a6−5=35.0001=35.000
Vậy số tiền quyên góp của lớp 7A là: 35.000×5=175.00035.000×5=175.000 (đ)
Số tiền quyên góp của lớp 7B là: 35.000×6=210.00035.000×6=210.000 (đ)
Số tiền quyên góp của lớp 7C là: 35.000×9=315.00035.000×9=315.000 (đ)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{9}=\dfrac{b-a}{6-5}=35000\)
Do đó: a=175000; b=210000; c=315000
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{450}{9}=50\)
Do đó: a=100; b=130; c=200
Gọi: số cây của 3 lớp trồng được lần lượt là: a,b,c
Ta có: a/2 = b/3 = c/4 và a+b+c= 450
Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
a/2 = b/3 = c/4 = a+b+c / 2+3+4 = 450/9 = 50
=> a/2 = 50 -> a= 2.50= 100
b/3= 50 -> b= 50 .3= 150
c/4= 50 -> c= 50.4= 200
Vậy lớp 7A trồng được 100 cây
lớp 7B trồng được 120 cây
lớp 7C trồng được 150 cây
7A=x ; 7B = y ; 7C =z ta có:
x/2 = z/3 ; y/z =0,8 => y/8 = z/10
<=> x/20 = y/24 = z/30
k = (z-x) / (30-20) = 35000/10 = 3500
x = 70000đ
y = 84000đ
z = 105000đ
bn nào hiểu dc tisk dùm, bn nào không hiểu thì k nên tisk
Gọi số thùng sách lớp 7A,7B và 7C ủng hộ lần lượt là a,b,c
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{36}{9}=4\)
Do đó: a=8; b=12; c=16
Bài làm
Gọi số quyển vở của cả ba lớp 7A, 7B, 7C quyên góp được lần lượt là: x, y, z
Số vở quyên góp được của cả ba lớp lần lượt tỉ lệ với 9, 7, 5
=> \(\frac{x}{9}=\frac{y}{7}=\frac{z}{5}\)
Mà tổng số vở của hai lớp 7C và 7B nhiều hơn 7A là 20 quyển
=> \(y+z-x=20\)
Theo tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{x}{9}=\frac{y}{7}=\frac{z}{5}=\frac{y+z-x}{7+5-9}=\frac{20}{3}\)
Do đó: \(\hept{\begin{cases}\frac{x}{9}=\frac{20}{3}\\\frac{y}{7}=\frac{20}{3}\\\frac{z}{5}=\frac{20}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=60\\y\approx47\left(Vi:46,666...\right)\\z\approx33\left(Vi:33,3333...\right)\end{cases}}\)
Vậy số quyển sách quyên góp được của lớp 7A là 60 quyển
số quyển sách quyên góp được của lớp 7B gần bằng 46 quyển
Số quyển sách quyên góp được của lớp 7C gần bằng 33 quyển
# Chúc bạn học tốt #
Gọi số tiền mỗi lớp đã quyên góp được lần lượt là :
x ; y ; z ( nghìn đồng ; x,y,z > 0 )
Số tiền quyên góp được của các lớp 7A, 7B, 7C lần lượt tỉ lệ với 3; 4; 5
=> x,y,z tỉ lệ thuận 3,4,5 => \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\left(1\right)\)
Tổng số tiền quyên góp được là 840 nghìn đồng=> x + y + z = 840 (2)
Từ (1) và (2) áp dụng tính chất dãy tỉ số bằng nhau, có :
\(\dfrac{x}{3}+\dfrac{y}{4}+\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{840}{12}=70\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=70\times3=210\\\dfrac{y}{4}=70\times4=280\\\dfrac{z}{5}=70\times5=350\end{matrix}\right.\) ( nghìn đồng )
Vậy...
Gọi số sách 3 lớp 7A,7B,7C quyên góp được là x,y,z (quyển) (\(x,y,z \in \mathbb{N}^*\))
Vì số sách mà ba lớp 7A,7B,7C quyên góp được tỉ lệ với ba số 5;6;8 nên \(\frac{x}{5} = \frac{y}{6} = \frac{z}{8}\)
Mà số sách lớp 7C quyên góp nhiều hơn số sách của lớp 7A quyên góp là 24 quyển nên \(z – x = 24\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{6} = \frac{z}{8} = \frac{{z - x}}{{8 - 5}} = \frac{{24}}{3} = 8\\ \Rightarrow x = 5.8 = 40;y = 6.8 = 48;z = 8.8 = 64\end{array}\)
Vậy số sách 3 lớp 7A,7B,7C quyên góp được lần lượt là 40 quyển; 48 quyển và 64 quyển
Đinh Huyền Trang Ý mình là bn đọc rõ góc đó ra chứ bn viết vậy mik chịu ( ý là ko biết ở đâu là góc D1, D2)