K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Goi vận tốc dự định là x

Trong 1h đi được x(km)

Theo đề, ta có: \(\dfrac{80}{x}=\dfrac{4}{3}+\dfrac{80-x}{x+20}\)

=>\(\dfrac{240\left(x+20\right)}{3x\left(x+20\right)}=\dfrac{4x\left(x+20\right)}{3x\left(x+20\right)}+\dfrac{3x\left(80-x\right)}{3x\left(x+20\right)}\)

=>\(4x^2+80x+240x-3x^2=240x+4800\)

=>\(x^2+320x-240x-4800=0\)

=>x=40

20 tháng 5 2016

Gọi v là vận tốc lúc đầu , t là thời gian chạy đoạn đường 30km.

ta có v.t=30(*)

Sẽ đến B chậm mất nữa giờ nếu giữ nguyên vận tốc đang đi,nhưng nếu tăng vận tốc thêm 5km/h thì tới B sớm hơn nửa giờ , tức là tăng v thêm 5 thí sẽ đi nhanh hơn 0.5+0.5=1h,

Vậy ta có : (v+5)(t-1)=30(**)

Cho (*)=(**) ta có : vt=vt+5t-v-5 <=> 5t-v-5=0

Thay \(t=\frac{30}{v}\) vào ta có : \(\frac{150}{v}-v-5=0\Leftrightarrow-v^2-5v+150=0\Leftrightarrow\hept{\begin{cases}v=10\\v=-15\left(loai\right)\end{cases}}\)

21 tháng 5 2016

Gọi x là vận tốc xe đạp trên quãng đường đã đi lúc đầu (x>0) (km/h)

y là độ dài quãng đường AB (y>30) (km)

Theo đề bài : \(\hept{\begin{cases}\frac{30}{x}=\frac{y-30}{x}+\frac{1}{2}\left(1\right)\\\frac{30}{x+5}=\frac{y-30}{x}-\frac{1}{2}\left(2\right)\end{cases}}\)

Lấy (1) trừ (2) theo vế được : \(\frac{30}{x}-\frac{30}{x+5}=1\) Giải phương trình này được x = 10 (nhận ) và x = -15 (loại)

Vậy : Vận tốc xe đạp trên quãng đường đã đi lúc  đầu là 10 km/h

28 tháng 5 2015

Gọi vận tốc ban đầu là x km/h (x>o). 
Với vận tốc này thì thời gian để đi quãng đường 30 km: 
30/x(h) 
Vì với vận tốc này sẽ đến B chậm mất nửa giờ hay chậm mất 1/2 h, nên suy ra thời gian dự định đến B sẽ là: 
30/x - 1/2(h) (1) 
Nếu tăng vận tốc thêm 5 km/h thì vận tốc mới sẽ là: 
x + 5(km/h) 
Với vận tốc mới thì thời gian đi hết 30 km sẽ là: 
30/(x + 5)...(h) 
Thời gian này so với thời gian dự định là sớm hơn nửa giờ (hay 1/2 h), nên suy ra thời gian dự định sẽ là: 
30/(x + 5) +1/2 (h) (2) 
Vì (1) bằng (2) nên ta có: 
30/x - 1/2 = 30/(x + 5) +1/2 
=> x^2 + 5x - 150 = 0 
Giải phương trình trên ta có: 
x1 = 10 (nhận) 
x2 = - 15 (loại) 
Vậy vận tốc ban đầu là 10 km/h.

24 tháng 5 2016

Gọi v là vận tốc lúc đầu, t là thời gian chạy đoạn đường 30km. 
Ta có: vt = 30 (1) 
Người đó nhận thấy rằng sẽ đến B chậm mất nửa giờ nửa giữ nguyên vận tốc đang đi. Nhưng nếu tăng tốc thêm 5 km/h thì sẽ tới đích sớm hơn nửa giờ. => có nghĩa là nếu tăng v thêm 5 thì sẽ đi nhanh hơn 0.5 + 0.5 = 1h 
Vậy ta có: (v + 5)(t - 1) = 30 (2) 
Cho (1) = (2) => vt = vt + 5t - v - 5 <=> 5t - v - 5 = 0 
thay t = 30/v vào ta có: 
150/v - v - 5 =0 
<=> 150 - 5v - v*v = 0 
Lấy máy bấm => v = 10 (nhận) hoặc v = -15 (loại)

10 tháng 5 2022

13 tháng 3 2017

đây mà gọi là toán lớp 9

4 tháng 3 2022

40 phút = \(\dfrac{2}{3}h.\)

Gọi vận tốc xe dự định đi từ A đến B là x \(\left(km/h\right)\left(x>10\right).\)

       thời gian theo dự định là y \(\left(h\right)\left(y>\dfrac{2}{3}\right).\)

\(\Rightarrow\) Quãng đường xe đi được là \(xy\left(km\right).\)

Nếu xe giảm vận tốc đi 10km/h thì xe đến B chậm hơn dự định 1 giờ, nên ta có phương trình:

\(\left(x-10\right)\left(y+1\right)=xy.\left(1\right)\)

Nếu xe tăng vận tốc thêm 10 km/h thì xe đến B sớm hơn dự định 40 phút, nên ta có phương trình:

\(\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\left(2\right)\)

Từ (1) và (2), ta có hpt:

\(\left\{{}\begin{matrix}\left(x-10\right)\left(y+1\right)=xy.\\\left(x+10\right)\left(y-\dfrac{2}{3}\right)=xy.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-10y-10=xy.\\xy-\dfrac{2}{3}x+10y-\dfrac{20}{3}=xy.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-10y=10.\\-\dfrac{2}{3}x+10y=\dfrac{20}{3}.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=50.\\y=4.\end{matrix}\right.\left(TM\right)\)

Vậy vận tốc xe dự định đi từ A đến B là 50 km/h.

4 tháng 3 2022

Gọi vận tốc và thời gian dự định đi từ A đến B lần lượt là v(km/h) và t(h)

(ĐK:v>10,t>\(\dfrac{2}{3}\))

Ta có quãng đường AB dài:vt(km)(1)

_Nếu xe giảm vận tốc đi 10 km thì:

   +Vận tốc của xe là:v-10(km/h)

   +Thời gian xe đi từ A đến B là:t+1(h)

\(\Rightarrow\)Quãng đường AB dài:(v-10)(t+1)=vt-10t+v-10(km)(2)

_Nếu xe tăng vận tốc thêm 10 km thì:

   +Vận tốc của xe là:v+10(km/h)

   +Thời gian xe đi từ A đến B là:t-\(\dfrac{2}{3}\)(h)

\(\Rightarrow\)Quãng đường AB dài:(v+10)(t-\(\dfrac{2}{3}\))=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)(km)(3)

Từ (1,2,3) ta có vt-10t+v-10=vt+10t-\(\dfrac{2}{3}\)v-\(\dfrac{20}{3}\)=vt

                      \(\Leftrightarrow\)\(\begin{cases} v-10t=10 \\ 10t-\dfrac{2}{3}v=\dfrac{20}{3} \end{cases}\)

                     \(\Leftrightarrow\)\(\begin{cases} v=50 \\ t=4 \end{cases}\)(t/m)

Vậy.........................................................................................

18 tháng 3 2018

đáp án là 65km/h( tự làm)

8 tháng 4 2018

sao ko làm hẳn ra

bài 1 : Một người đi xe đạp xuất phát từ A. Sau 4h, một người đi xe máy cũng đi từ A và đuổi theo trên cùng một con đườngvà gặp người đi xe đạp cách A là 60km. Tính vận tốc của mỗi người biết vận tốc của người đi xe máy lớn hơn vận tốc người đi xe đạp là 20km/hbài 2: hai bến tàu A và B cách nhau 48km. Một tàu thủy đi từ A đến B rồi trở lại, cả đi cả về hết 4h. Tính vận...
Đọc tiếp

bài 1 : Một người đi xe đạp xuất phát từ A. Sau 4h, một người đi xe máy cũng đi từ A và đuổi theo trên cùng một con đườngvà gặp người đi xe đạp cách A là 60km. Tính vận tốc của mỗi người biết vận tốc của người đi xe máy lớn hơn vận tốc người đi xe đạp là 20km/h

bài 2: hai bến tàu A và B cách nhau 48km. Một tàu thủy đi từ A đến B rồi trở lại, cả đi cả về hết 4h. Tính vận tốc riêng của tàu biết vận tốc dòng nước là 5km/h và vận tốc riếng của tàu cả đi cả về không đổi

bài 3: một người đi xe đạp từ A đến B cách nhau 20km trong một thời gian đã định. Sau khi đi được một giờ với vạn tốc dự định, người đó giảm vận tốc đi 2km/h trên quãng đường còn lại, nên đã đến B chậm 15 phút so với dự định. Tính vận tốc dự địn của người đi xe đạp

0