Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD là hình bình hình vì có các cạnh đối bằng nhau
EFGH là hình bình hành vì có các góc đối bằng nhau
PQRS là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường
XYUV là hình bình hành vì có XV = YU và XV // YU
* Tứ giác ABCD là hình bình hành vì AB // CD và AB = CD.
* Tứ giác IKMN có: ∠ I + ∠ K + ∠ N + ∠ M = 360 0
Suy ra: ∠ N = 360 0 - ( ∠ K + ∠ I + ∠ M) = 110 0
Ta có ∠ I = ∠ M = 70 0 và ∠ K = ∠ N = 110 0
Suy ra IKMN là hình bình hành (tứ giác có các góc đối bằng nhau).
* Tứ giác EFGH không là hình bình hành vì có hai đường chéo không cắt nhau tại trung điểm mỗi đường.
Tứ giác ABCD là hình bình hành vì hai cạnh đối AD, BC song song và bằng nhau.
Tứ giác IKMN là hình bình hành vì KM // IN, IK // MN (hoặc vì \(\widehat{I}=\widehat{M},\widehat{K}=\widehat{N}\) )
Tứ giác ABCD là hình bình hành
Tứ giác IKMN là hình bình hành
a) Xét tứ giác \(ABCD\) ta có:
\(AB = CD\) (gt)
\(AD = BC\) (gt)
Suy ra: \(ABCD\) là hình bình hành
b) Xét tứ giác \(EFGH\) ta có:
\(\widehat {\rm{E}} = \widehat G\) (gt)
\(\widehat F = \widehat H\) (gt)
Suy ra \(EFGH\) là hình bình hành
c) Ta có: \(\widehat J = \widehat {\rm{K}} = 60^\circ \) (gt)
Mà hai góc ở vị trí so le trong
Suy ra \(IJ\) // \(KL\) (1)
Ta có: \(\widehat K + \widehat L = 60^\circ + 120^\circ = 180^\circ \)
Mà hai góc ở vị trí trong cùng phía
Suy ra \(JK\;{\rm{//}}\;IL\) (2)
Từ (1), (2) suy ra \(IJKL\) là hình bình hành
d) Xét tứ giác \(MNPQ\) ta có:
\(O\) là trung điểm của \(NQ\) (do \(OQ = ON\))
\(O\) là trung điểm của \(MP\) (do \(OP = OM\))
Suy ra \(MNPQ\) là hình bình hành
e) Tứ giác \(TSRU\) không là hình bình hành
g) Ta có: \(\widehat {\rm{V}} + \widehat {\rm{X}} = 75^\circ + 105^\circ = 180^\circ \)
Mà hai góc ở vị trí trong cùng phía
Suy ra: \(VZ\) // \(XY\)
Xét tứ giác \(VZYX\) ta có:
\(VZ\) // \(XY\) (cmt)
\(VZ = XY\) (gt)
Suy ra \(VZYX\) là hình bình hành