Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có bốn chữ số tổng quát là 1000.a+b.100+c.10+d .
Theo bài a+b+c+d=11 (1)
Cho a+c−b−d/11=k (k thuoc Z) (2)
a;b;c;d \(\le\) 9 => k thuoc {0;1;-1}.
Sở dĩ như vậy vì nếu k=2 => (a+c)-(b+d)=22 vô lí
TH1: k=0 => a+c-(b+d)=11.k. (3)
Tu (1);(3) ta được 2.(a+c)=11.(1+k) => 2.(a+c)=11 => a+c=5,5 vô lí nên loại.
TH2: k=-1 => 2.(a+c)=11.(1+k)=0 => a=c=0 vô lí nên loại.
TH3: k=1 .
lấy (1) trừ đi (3) 2.(b+d)=11.(1-k)
=> b=d=0 => nếu a=2 thi c=9
a=3 => c=8
a=4 => c=7
a=5 => c=6
a=6 => c=5
a=7 => c=4
a=8 => c=3
a=9 => c=2
Vậy các số cần tìm là: 2090;3080;4070;5060;6050;7040;8030;9020
lik e nhe
số có 4 chữ số chia hết cho 11 và tổng các chữ số chia hết cho 11
abcd =11q ; a+b+c+d = 11.p
=> a + c - ( b+d) chia hết cho 11
=>a+b+c+d + a+c -b-d = 2(a + c) chia hết cho 11
=>a + c chia hết cho 11 => a +c =11 =2+9=3+8=4+7 =5+6
=> b+d chia hết cho 11=> b+d =11 = 2+9=3+8 ...............
abcd =( 2299; 2992;9229;9922 ); ( 3388; ......); (.............); (............)
Vậy có 4.4 =16 số như vậy
chứng minh tồn tại vô số n là số tự nhiên sao cho 4n2 +1 chia hết cho 5 và chia hết chô 13
ak ý bn đề là thế này ak
\(T\text{ìm}\)n\(\in\)N* sao cho: với mọi K là số tự nhiên thì \(n^k-n⋮1000\)
Ta có: k là số tự nhiên khác 0 \(\Rightarrow1983^k\)không chia hết cho 5 (vì chia hết cho 5 thì số tận cùng phải là 0, hoặc 5)
Mà \(10^5\)lại chia hết cho 5
Suy ra không tồn tại k thỏa mãn đề bài