Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Số nguyên tố là các số lớn hơn 1 và không có ước nào khác ngoài 1 và chính nó
Ta có: Ư(16) = {1 ; 2 ; 4 ; 8 ; 16}
Ta lại có a;b là các số lẻ nên ab là số lẻ
Mà số lẻ không chia hết cho số chẵn
Nên (a ; ab + 16) = 1
Trong các số tự nhiên sau số nào là số nguyên tố:
A.11
B.35
C.27
D.8
Thương và số dư của phép chia 47:7 là:
A.thương là 6. Số dư là 9
B.thương là 7. Số dư là 3
C.thương là 6. Số dư là 4
D.thương là 6. Số dư là 5
Trong các phân số sau số nào là phân số tối giản
A.6/8
B.10/5
C.3/8
D.15/40
9 Tìm số nguyên tố p sao cho :
a) Nếu p = 2
=> p + 16 = 2 + 16 = 18 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 16 = 3 + 16 = 19 (số ngyên tố)
=> p + 38 = 3 + 38 = 41 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
b) Nếu p = 2
=> p + 28 = 2 + 28 = 30 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 28 = 3 + 28 = 31 (số ngyên tố)
=> p + 44 = 3 + 44 = 47 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 44 = 3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
c) Nếu p = 2
=> p + 26 = 2 + 26 = 28 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 42 = 3 + 42 = 45 (hợp số)
=> p = 3 (loại)
Nếu p = 5
=> p + 26 = 5 + 26 = 31 (số nguyên tố)
=> p + 42 = 5 + 42 = 47 (số nguyên tố)
=> p + 48 = 5 + 48 = 53 (số nguyên tố)
=> p + 74 = 5 + 74 = 79 (số nguyên tố)
=> p = 5 (chọn)
Nếu p > 5
=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))
Nếu p = 5k + 1
=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)5
=> p + 74 là hợp số
=> p = 5k + 1 (loại)
Nếu p = 5k + 2
=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5
=> p + 48 là hợp số
=> p = 5k + 2 (loại)
Nếu p = 5k + 3
=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5
=> p + 42 là hợp số
=> p = 5k + 3 (loại)
Nếu p = 5k + 4
=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5
=> p + 26 là hợp số
=> p = 5k + 4 (loại)
Vậy p = 5
10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
Ta có : a + a + 1 + a + 2 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên liên tiếp là hợp số
b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4
=> Ta có : a + a + 2 + a + 4 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số
đúng vì đó là 2 và 3
đúng VD 3;5;7
sai vì nguyên tố 2 chẵn
sai nguyên tố 2 tận cùng là 2
tick nha có giải thick đàng hoàng đó
a, Sai, vì số 2 là số nguyên tố chẵn
b, Đúng, vì ab có ít nhất ba ước số là a,a,ab.
c, Sai, chẳng hạn 2 + 3 = 5
a, Sai, vì số 2 là số nguyên tố chẵn
b, Đúng, vì ab có ít nhất ba ước số là a,a,ab.
c, Sai, chẳng hạn 2 + 3 = 5
như bạn Cao Minh Tâm vậy
Lời giải:
Gọi $d=ƯCLN(a,ab+16)$
$\Rightarrow a\vdots d; ab+16\vdots d$
$\Rightarrow 16\vdots d$
$\Rightarrow d\in \left\{1; 2; 4; 8; 16\right\}$
Vì $a\vdots d; a$ là số lẻ nên $d$ lẻ.
$\Rightarrow d=1$
Vậy $ƯCLN(a,ab+16)=1$ hay $a,ab+16$ là hai số nguyên tố cùng nhau.
Trong các số tự nhiên số nào là số nguyên tố?
A.16 B.27
C.2 C.35
C