Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{a}=\sqrt{0}=0\)
\(\sqrt{c}=\sqrt{1}=1\)
\(\sqrt{d}=\sqrt{25}=5\)
\(\sqrt{e}=\sqrt{3^2+4^2}=5\)
\(\sqrt{h}=\sqrt{\left(2-11\right)^2}=9\)
\(\sqrt{i}=\sqrt{\left(-5\right)^2}=5\)
\(\sqrt{l}=\sqrt{\sqrt{16}=2}\)
\(\sqrt{m}=\sqrt{3^4}=9\)
\(\sqrt{n}=\sqrt{5^2-3^2}=4\)
a = 2 = \(\sqrt{4}\) b = -5 = \(\sqrt{25}\) c = 1 = \(\sqrt{1}\) d = 25 = \(\sqrt{625}\)
e = 0 = \(\sqrt{0}\) g = \(\sqrt{7}=\sqrt{7}\) h =\(\dfrac{3}{4}=\) \(\sqrt{\dfrac{9}{16}}\) i = \(\sqrt{4}-3\) = \(\sqrt{1}\)
k = \(\dfrac{1}{4}-\dfrac{1}{2}\) =\(\sqrt{\dfrac{1}{16}}\)
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
3,
a) (−23+37):45+(−13+47):45
= \(-\frac{5}{21}:\frac{4}{5}+\frac{5}{21}:\frac{4}{5}\)
= \(\left(-\frac{5}{21}+\frac{5}{21}\right):\frac{4}{5}\)
= \(0:\frac{4}{5}=0\)
2,
a) \(\frac{-3}{4}\).\(\frac{12}{-5}\).(\(\frac{-25}{6}\))
= \(\frac{-3.4.3.\left(-5\right).5}{4.\left(-5\right).3.3}\)
= \(-5\)
b) (−2).\(\frac{-38}{21}\).\(\frac{-7}{4}\).(\(\frac{-3}{8}\))
= \(\frac{-2.\left(-38\right)\left(-7\right)\left(-3\right)}{\left(-7\right)\left(-3\right)\left(-2\right)\left(-2\right).8}\)
= \(\frac{19}{8}\)
c) (\(\frac{11}{12}:\frac{33}{16}\)).\(\frac{3}{5}\)
= \(\left(\frac{11}{12}.\frac{16}{33}\right).\frac{3}{5}\)
= \(\frac{4}{9}.\frac{3}{5}\)
= \(\frac{4}{15}\)
d) \(\frac{7}{23}\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)
= \(\frac{7}{23}.\left(\frac{-41}{10}\right)\)
= \(\frac{-287}{203}\)
3. Tính:
a) (\(\frac{-2}{3}+\frac{3}{7}\)):\(\frac{4}{5}\)+(\(\frac{-1}{3}+\frac{4}{7}\)):\(\frac{4}{5}\)
= (\(\frac{-2}{3}+\frac{3}{7}\)\(+\)\(\frac{-1}{3}+\frac{4}{7}\)) : \(\frac{4}{5}\)
= 0 : \(\frac{4}{5}\)
= 0
b) \(\frac{5}{9}\):(\(\frac{1}{11}-\frac{5}{22}\))+\(\frac{5}{9}\):(\(\frac{1}{15}-\frac{2}{3}\))
= \(\frac{5}{9}\): \(\frac{-3}{22}\)+ \(\frac{5}{9}\): \(\frac{-3}{5}\)
= \(\frac{5}{9}\): \(\frac{-81}{110}\)
= \(\frac{-550}{729}\)
Bạn ghi ra nhiều vậy người khác nhìn rối mắt không trả lời được đâu ghi từng bài ra thôi
Mình chỉ làm được vài bài thôi, kiến thức có hạn :>
Bài 1:
Câu a và c đúng
Bài 2:
a) |x| = 2,5
=>x = 2,5 hoặc
x = -2,5
b) |x| = 0,56
=>x = 0,56
x = - 0,56
c) |x| = 0
=. x = 0
d)t/tự
e) |x - 1| = 5
=>x - 1 = 5
x - 1 = -5
f) |x - 1,5| = 2
=>x - 1,5 = 2
x - 1,5 = -2
=>x = 2 + 1,5
x = -2 + 1,5
=>x = 3,5
x = - 0,5
các câu sau cx t/tự thôi
Bài 3: Ko hỉu :)
Bài 4: Kiến thức có hạn :)
Các số có căn bậc hai:
a = 0 c = 1 d = 16 + 9
e = 32 + 42 h = (2-11)2 i = (-5)2
l = √16 m = 34 n = 52 - 32
Căn bậc hai không âm của các số đó là: