K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

Ta phân tích \(270=2.3^3.5=2.27.5=2.15.9=5.9.6\)

\(5.3.18=3.15.6=3.9.10=27.10.1=9.30.1=18.15.1\)

Từ đó ta có bảng:

11518
1093
2725

Vậy các số cần tìm là 1; 2; 3; 5; 10; 12; 5; 18 và 27.

22 tháng 2 2018

Bài giải : Giả sử số ô tô màu đỏ ở tất cả các dòng đều khác nhau mà mỗi dòng có 10 ô nên số ô được tô màu đỏ ít nhất là :
0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 (ô).
Lí luận tương tự với màu xanh, màu tím ta cũng có kết quả như vậy.
Do đó bảng sẽ có ít nhất 45 + 45 + 45 = 135 (ô). Điều này mâu thuẫn với bảng chỉ có 100 ô.
Chứng tỏ ít nhất phải có 2 dòng mà số ô tô bởi cùng một màu là như nhau.
Đối với các cột, ta cũng lập luận tương tự như trên. Do đó cả hai bạn đều nói đúng.

22 tháng 2 2018

Bài giải: Giả sử số ô tô màu đỏ ở tất cả các dòng đều khác nhau mà mỗi dòng có 10 ô nên số ô được tô màu đỏ ít nhất là:

0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 (ô).

Lí luận tương tự với màu xanh, màu tím ta cũng có kết quả như vậy.

Do đó bảng sẽ có ít nhất 45 + 45 + 45 = 135 (ô). Điều này mâu thuẫn với bảng chỉ có 100 ô.

Chứng tỏ ít nhất phải có 2 dòng mà số ô tô bởi cùng một màu là như nhau.

Đối với các cột, ta cũng lập luận tương tự như trên. Do đó cả hai bạn đều nói đúng.

1. Cho sáu số nguyên dương đôi một khác nhau và đều nhỏ hơn 10. Chứng minh rằng luôn tìm được ba số trong đó có một số bằng tổng hai số còn lại.2. Cho một bảng ô vuông kích thước 5× 5. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả  các tổng đó luôn tồn tại...
Đọc tiếp

1. Cho sáu số nguyên dương đôi một khác nhau và đều nhỏ hơn 10. Chứng minh rằng luôn tìm được ba số trong đó có một số bằng tổng hai số còn 
lại.
2. Cho một bảng ô vuông kích thước 5× 5. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả  các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau.
3. Có 20 người quyết định đi bơi thuyền bằng 10 chiếc thuyền đôi. Biết rằng nếu 2 người A và B mà không quen nhau thì tổng số những người quen của A và những người quen của B không nhỏ hơn 19. Chứng minh rằng có thể phân công vào các thuyền đôi sao cho mỗi thuyền đều là hai người quen nhau

❤️❤️❤️

1
18 tháng 4 2020

mình không biết

19 tháng 5 2021

a, Giả sử 6 số \(d_1,d_2,d_3,c_1,c_2,c_3\) mỗi số bằng 1 và -1, có tổng bằng 0 thì bắt buộc trong 6 số trên có ba số là 1 và ba số là -1

Vì \(d_1d_2d_3c_1c_2c_3=-1\Rightarrow\left(d_1d_2d_3\right)^2=-1\) \(\left(\text{vô lí}\right)\)

\(\Rightarrowđpcm\)

19 tháng 5 2021

sr bạn mk ko hiểu chỗ (d1d2d3)2 = -1

13 tháng 4 2017

Tích của mỗi hàng, mỗi cột,mỗi đường chéo là:

27.24.21 = 27+ 4+ 1 = 212

Từ đó ta điền được vào các ô trống còn lại như sau:

27 20 25
22 24 26
23 28 21
22 tháng 9 2017

Tích của mỗi hàng, cột, đường chéo là:

100.10-5.102 = 10–3

Từ đó ta điền được vào các ô trống còn lại như sau:

100 10-5 102
101 10-1 10-3
10-4 103 10-2