\(\dfrac{1}{x}-3=0\)         B. 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

các phương trình bậc nhất là a) c) d) 

9 tháng 1 2018

Các phương trình bậc nhất:

a: 1 + x = 0

c: 1 - 2t = 0

d: 3y = 0

5 tháng 4 2017

Bài 1:

a) Để (1) là pt bậc nhất thì \(m-2\ne0\Leftrightarrow m\ne2\)

---- hình như là còn đk m khác x+2 -------

b) Ta có ; (1) <=> (m-2)x = 2 (*)

7-4x = 2x -5 <=> 6x = 12 <=> x= 2 (**)

Từ (*) và (**) => m-2 = 1 <=> m=3

AH
Akai Haruma
Giáo viên
7 tháng 6 2018

Lời giải:

Xét pt đầu tiên. Theo định lý Viete ta có:

\(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=-1\end{matrix}\right.\)

Khi đó:

\(y_1+y_2=1+\frac{1}{x_1}+1+\frac{1}{x_2}=2+\frac{1}{x_1}+\frac{1}{x_2}\)

\(=2+\frac{x_1+x_2}{x_1x_2}=2+\frac{5}{-1}=-3\)

Và:

\(y_1y_2=\left(1+\frac{1}{x_1}\right)\left(1+\frac{1}{x_2}\right)=\frac{(x_1+1)(x_2+1)}{x_1x_2}\)

\(=\frac{x_1x_2+(x_1+x_2)+1}{x_1x_2}=\frac{-1+5+1}{-1}=-5\)

Vậy $y_1+y_2=-3; y_1y_2=-5$

Theo định lý Viete đảo, thì $y_1,y_2$ là nghiệm của PT:

\(y^2+3y-5=0\)

\(\dfrac{x+1}{x-1}+\dfrac{1}{x+1}=0\\ < =>\dfrac{\left(x+1\right)^2}{x^2-1}+\dfrac{x-1}{x^2-1}=0->\left(1\right)\\ ĐKXĐ:x^2-1\ne0< =>\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

\(\left(1\right)=>\dfrac{\left(x+1\right)^2}{x^2-1}+\dfrac{x-1}{x^2-1}=0\\ =>\left(x+1\right)^2+\left(x-1\right)=0\\ < =>x^2+2x+1+x-1=0\\ < =>x^2+3x=0\\ < =>x\left(x+3\right)=0\\ =>\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=-3\left(TMĐK\right)\end{matrix}\right.\)

Vậy: Tập nghiệm của pt là S= {-3;0}

31 tháng 3 2017

\(\dfrac{x}{x-3}+\dfrac{6x}{9-x^2}=0\) (ĐKXĐ: \(x\ne\pm3\))

\(\Leftrightarrow\dfrac{-x\left(3+x\right)+6x}{9-x^2}=0\)

\(\Rightarrow-3x-x^2+6x=0\\ \Leftrightarrow x\left(-x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\-x+3=0\Leftrightarrow x=3\left(loại\right)\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={0}

2 tháng 7 2018

Hỏi đáp Toán

Bài 1

4 tháng 1 2019

;;;

a: \(\Leftrightarrow\dfrac{x+5}{2x-1}+\dfrac{2x-1}{x+5}-2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+5\right)+\left(2x-1\right)^2-2\left(2x-1\right)\left(x+5\right)=0\)

\(\Leftrightarrow x^2+10x+25+4x^2-4x+1-2\left(2x^2+10x-x-5\right)=0\)

\(\Leftrightarrow5x^2+6x+26-4x^2-18x+10=0\)

\(\Leftrightarrow x^2-12x+36=0\)

=>x=6

b: \(\dfrac{9x-27}{2x-7}-\dfrac{8x-28}{x-3}=0\)

\(\Leftrightarrow9\left(x-3\right)^2-4\left(2x-7\right)^2=0\)

\(\Leftrightarrow\left(3x-9\right)^2-\left(4x-14\right)^2=0\)

\(\Leftrightarrow\left(3x-9-4x+14\right)\left(3x-9+4x-14\right)=0\)

\(\Leftrightarrow\left(5-x\right)\left(7x-23\right)=0\)

hay \(x\in\left\{5;\dfrac{23}{7}\right\}\)

30 tháng 4 2018

\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)

\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)

\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)

Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)

1 tháng 5 2018

a) \(\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)

=>\(\left(x+1\right)^2-\left(x-1\right)^2=16\)

=>\(x^2+2x+1-x^2+2x-1=16\)

=>4x=16=>x=4

b)\(\dfrac{12}{x^2-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0\)

=>\(\dfrac{12}{x^2-4}-\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\dfrac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\)

=>\(12-\left(x+1\right)\left(x+2\right)+\left(x+7\right)\left(x-2\right)=0\)

=>\(12-x^2-3x-2+x^2+5x-14=0\)

=>2x-4=0=>2x=4=>x=2

c)\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)

=>\(\dfrac{12}{8+x^3}=\dfrac{x^3+8}{x^3+8}+\dfrac{x^2-2x+4}{x^3+8}\)

=>\(12=x^3+8+x^2-2x+4\)

=>\(x^3+x^2-2x=0\)

=>\(x^3-x+x^2-x=0\)

1 tháng 5 2018

c)=>\(x\left(x^2-1\right)+x\left(x-1\right)=0\)

=>\(x\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)

=>\(x\left(x-1\right)\left(x+2\right)=0\)

=>x=?