K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

4 tháng 7 2017

Chọn B

Phương pháp:

Chia khối lập phương, nhận xét các khối tạo thành và tính thể tích của chúng

Cách giải:

Chia khối lập phương ABC.A’B’C’ bởi mặt phẳng (AB’D’) và (C’BD) ta được:

+) Chóp A.A’B’D’

+) Chóp C’.BCD

+) Khối bát diện ABD.B’C’D’

Ta có

Các khối A.A’B’D’ và C’.BCD không phải là chóp tam giác đều và khối bắt diện ABD.B’C’D’ không phải là khói bát diện đều

Do đó chỉ có mệnh đề III đúng

2 tháng 5 2018

20 tháng 10 2017

Đáp án B

9 tháng 2 2019

Đáp án B

11 tháng 9 2019

2 tháng 4 2018

Đáp án A.

Gọi O là tâm hình vuông ABCD, H là trung điểm AB.

⇒ A B ⊥ S H O ⇒ S A B ; A B C D ^ = S H ; O H ^ = S H O ^ = α . ⇒ c o s α = 1 3 ⇒ tan α = 3 x 2 − 1 = 2 2 ⇒ S O = tan α × O H = a 2 .

Kẻ CM vuông góc với SD M ∈ S D ⇒ m p P ≡ m p A C M .

Mặt phẳng A M C  chia khối chóp A.ABCD thành hai khối đa diện gồm M.ACD có thể tích là V 1  và khối đa diện còn lại có thể tích V 2 .

Diện tích tam giác SAB là S Δ S A B = 1 2 . S H . A B = a 2 . 3 a 2 = 3 a 2 4 .

S D = S O 2 + D O 2 = a 10 2 ⇒ S Δ . S C D = 1 2 . S H . S D ⇒ C M = 3 a 10 .

Tam giác MCD vuông tại M ⇒ M D = C D 2 − M C 2 = a 10 ⇒ M D S D = 1 5 .

Ta có:

V M . A C D V S . A C D = M D S D = 1 5 ⇒ V M . A C D = V S . A B C D 10 ⇔ V 1 = V 1 + V 2 10 ⇔ V 1 V 2 = 1 9 .

2 tháng 4 2016

Giả sử đa diện (H) có các đỉnh là , gọi lần lượt là số các mặt của (H) nhận chúng là đỉnh chung. Như vậy mỗi đỉnh  có  cạnh đi qua. Do mỗi cạnh của (H) là cạnh chưn của đúng hai mặt nên tổng số các cạnh của H bằng                                                                                                         

Vì c là số nguyên,  là những số lẻ nên Đ phải là số chẵn. Ví dụ : Số đỉnh của hình chóp ngũ giác bằng sáu.

 

13 tháng 4 2019

Đáp án C