K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

Trong các khoảng thời gian từ 0 đến \(\dfrac{T}{4}\) , từ \(\dfrac{T}{4}\) đến , \(\dfrac{T}{2}\) từ \(\dfrac{T}{2}\) đến \(\dfrac{3T}{4}\)\(\dfrac{3T}{4}\) từ  đến T vận tốc của dao động điều hoà thay đổi:

Từ 0 đến \(\dfrac{T}{4}\): vận tốc có hướng từ biên về vị trí cân bằng ngược chiều dương, độ lớn tăng dần từ 0 và đạt giá trị lớn nhất tại \(\dfrac{T}{4}\)

Từ \(\dfrac{T}{4}\) đến \(\dfrac{T}{2}\): vận tốc có hướng từ vị trí cân bằng về biên ngược với chiều dương, độ lớn giảm dần từ giá trị lớn nhất về 0 tại \(\dfrac{T}{2}\)

Từ \(\dfrac{T}{2}\) đến \(\dfrac{3T}{4}\): vận tốc có hướng từ vị trí biên về vị trí cân bằng cùng chiều dương, độ lớn tăng dần từ 0 và đạt giá trị lớn nhất tại \(\dfrac{3T}{4}\)

Từ \(\dfrac{3T}{4}\) đến T: vận tốc có hướng từ vị trí cân bằng về biên cùng chiều dương, độ lớn giảm dần từ giá trị lớn nhất về 0 tại T.

QT
Quoc Tran Anh Le
Giáo viên
5 tháng 11 2023

1. So sánh đồ thị của vận tốc (Hình 3.2) với đồ thị của li độ (Hình 3.1)

- Pha ban đầu của vận tốc là \(\frac{\pi }{4}\)

- Pha ban đầu của li độ là 0

Pha ban đầu của vận tốc lớn hơn li độ nên vận tốc sớm pha hơn so với li độ.

2. Trong các khoảng thời gian từ 0 đến \(\frac{T}{4}\), từ \(\frac{T}{4}\)đến \(\frac{T}{2}\), từ \(\frac{T}{2}\)đến \(\frac{{3T}}{4}\), từ \(\frac{{3T}}{4}\)đến T vận tốc của dao động điều hoà thay đổi:

Từ 0 đến \(\frac{T}{4}\): vận tốc có hướng từ biên về vị trí cân bằng ngược chiều dương, độ lớn tăng dần từ 0 và đạt giá trị lớn nhất tại \(\frac{T}{4}\)

Từ \(\frac{T}{4}\)đến \(\frac{T}{2}\): vận tốc có hướng từ vị trí cân bằng về biên ngược với chiều dương, độ lớn giảm dần từ giá trị lớn nhất về 0 tại \(\frac{T}{2}\)

Từ \(\frac{T}{2}\) đến \(\frac{{3T}}{4}\): vận tốc có hướng từ vị trí biên về vị trí cân bằng cùng chiều dương, độ lớn tăng dần từ 0 và đạt giá trị lớn nhất tại \(\frac{{3T}}{4}\)

Từ \(\frac{{3T}}{4}\)đến T: vận tốc có hướng từ vị trí cân bằng về biên cùng chiều dương, độ lớn giảm dần từ giá trị lớn nhất về 0 tại T.

QT
Quoc Tran Anh Le
Giáo viên
5 tháng 11 2023

a) Từ 0 đến \(\frac{T}{4}\): Wđ tăng từ 0 đến giá trị lớn nhất tại \(\frac{T}{4}\), Wt giảm từ giá trị lớn nhất về 0 tại \(\frac{T}{4}\).

Từ \(\frac{T}{4}\)đến \(\frac{T}{2}\): Wđ giảm từ giá trị lớn nhất về 0 tại \(\frac{T}{2}\), Wt tăng từ 0 đến giá trị lớn nhất tại \(\frac{T}{2}\).

Từ \(\frac{T}{2}\)đến \(\frac{{3T}}{4}\): Wđ tăng từ 0 đạt giá trị lớn nhất tại \(\frac{{3T}}{4}\),Wt giảm từ giá trị lớn nhất về 0 tại \(\frac{{3T}}{4}\).

Từ \(\frac{{3T}}{4}\)đến T: Wđ giảm từ giá trị lớn nhất về 0 tại T, Wt tăng từ 0 đến giá trị lớn nhất tại T.

b) Tại thời điểm t = 0: Wđ = 0, Wt = W.

Tại thời điểm t = \(\frac{T}{8}\): Wđ = Wt = \(\frac{{\rm{W}}}{2}\).

Tại thời điểm t = \(\frac{T}{4}\): Wđ = W, Wt = 0.

Tại thời điểm t = \(\frac{{3T}}{8}\): Wđ = Wt = \(\frac{{\rm{W}}}{2}\).

→ ở mỗi thời điểm trên ta đều có: Wđ + Wt = W.

HQ
Hà Quang Minh
Giáo viên
29 tháng 7 2023

\(T=\dfrac{2\pi}{w}=\dfrac{2\pi}{\pi}=2\left(s\right)\)

Trong 1 nửa chu kì, vật di chuyển được quãng đường là \(2\cdot10=20\left(cm\right)\)

Vật khi đó phải đi từ vị trí có pha bằng \(-\dfrac{\pi}{3}\) đến vị trí có pha bằng \(\dfrac{\pi}{3}\), vì vật sẽ di chuyển được quãng đường \(\dfrac{A}{2}+\dfrac{A}{2}=A=10\left(cm\right)\)

Vậy thời gian vật phải đi là: \(\dfrac{T}{2}+\dfrac{T}{6}=\dfrac{2}{2}+\dfrac{2}{6}=\dfrac{4}{3}\left(s\right)\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 7 2023

Thời gian ngắn nhất để vật đi từ VTCB đến li độ \(x=-\dfrac{A}{2}\) là \(\dfrac{T}{12}\)

\(\Rightarrow\dfrac{T}{12}=0,1\Rightarrow T=1,2\left(s\right)\)

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

Ta có: \(u=Acos\left(\dfrac{2\pi}{T}t-\dfrac{2\pi x}{\lambda}\right)\)

Khoảng cách giữa hai điểm gần nhau nhất dao động cùng pha là λ và khoảng cách giữa hai điểm gần nhau nhất dao động ngược pha là \(\dfrac{\lambda}{2}\)

6 tháng 10 2023

\(\omega=20\left(\dfrac{rad}{s}\right)\)

\(A^2=x^2+\dfrac{v^2}{\omega}\)

\(\Rightarrow A=\sqrt{\left(-4\right)^2+\dfrac{\left(-80\right)^2}{20^2}}=4\sqrt{2}\)

\(cos\varphi=\dfrac{4}{4\sqrt{2}}=\dfrac{1}{\sqrt{2}}\Rightarrow\varphi=\dfrac{\pi}{4}\)

Phương trình dao động:

\(x=4\sqrt{2}cos\left(20t+\dfrac{\pi}{4}\right)\)

 

 

16 tháng 8 2023

`a)` Biên độ dao động `A=2`

      Pha ban đầu dao động `\varphi =\pi/2`

`b)` Pha dao động khi `t=2` là `4\pi .2+\pi/2 = [17\pi]/2`

      Li độ dao động khi `t=2` là `x=2cos ([17\pi]/2)=0`

16 tháng 8 2023

- Biên độ `A=2(cm)`

- Tần số góc `\omega =4\pi (rad//s)`

- Chu kì `T=[2\pi]/[4\pi]=0,5(s)`

- Tần số `f=1/[0,5]=2(Hz)`

- Pha ban đầu `\varphi = -\pi/6`

- Pha của dao động ở thới điểm `t=1s` là `4\pi .1 - \pi/6=[23\pi]/6`.