Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
DO đó: F là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
hay BEFC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEFC là hình thang cân
Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
xét tam giác ABC có BD=DA; BE=EC nên DE là đường trung bình của tam giác ABC suy ra DE song song vs AF
tương tự cm đc EFsong song vs AD
suy ra tứ giác ADEF là hình bình hành
a) Xét tam giác ABC ta có : \(AF=CF\) ( vì F là trung điểm của AC )
\(EB=EC\)( vì E là trung điểm của BC )
=> EF là đường trung bình tam giác ABC.
\(\Rightarrow EF//AD\)(1)
và \(EF=\frac{1}{2}AB\)
Mà \(BD=AD\)
\(\Leftrightarrow EF=AD\) (2)
Từ (1) và (2)
=> ADEF là hình bình hành (đpcm)
Gọi hình chữ nhật thứ nhất có cạnh là (a là cạnh dài, b là cạnh rộng) a,b và hình chữ nhật thứ 2 có cạnh là c, d.(c là cạnh dài, d là cạnh rộng).
Theo giả thiết ta có (a+b) = (c+d) hay (a+b)^2=(c+d)^2 <=> a^2+2ab+b^2=c^2+2cd+d^2 <=> 2(cd-ab)=a^2+b^2-c^2-d^2.(1)
Mặt khác ta có a-b < c-d (do hiệu hai cạnh của hình thứ 2 lớn hơn hình 1) vậy ta có: (a-b)^2<(c-d)^2 <=>a^2-2ab+b^2<c^2-2cd+d^2
hay 2(ab-cd)>a^2+b^2-c^2-d^2 mà theo (1) ta có 2(ab-cd)>2(cd-ab) vậy ab>cd (2)
Mà ab là diện tích hình chữ nhật thứ nhất, và cd là diện tích hình chữ nhật thứ hai.
Vậy từ (2) ta có ĐPCM
Xét tam giác ABC có :
F là trung điểm của AB
E là trung điểm của AC
=) FE là đường trung bình của tam giác ABC
=) FE // BC và FE=\(\frac{1}{2}\)BC
Do FE // BC=) Tứ giác BCEF là hình thang
Mà \(\widehat{B}\)=\(\widehat{C}\)
=) BCEF là hình thang cân
Do FE=\(\frac{1}{2}\)BD
Mà D là trung điểm của BC=) BD=CD
=) FE=BD=CD
Do EF // BC =) EF//BD
Xét tứ giác BDEF có :
EF//BD và EF=BD
=) BDEF là hình bình hành
Xét tam giác ABC có :
D là trung điểm của BC
F là trung điểm của AB
=) DF là đường trung bình của tam giác ABC
=) DF // AC =) DF // AE (*)
Và DF=\(\frac{1}{2}\)AC
Do E là trung điểm của AC=) AE=EC=\(\frac{AC}{2}\)
=) DF=AE=EC (**)
Từ (*) và (**) =) AEDF là hình bình hành (1)
Do F là trung điểm của AB =) AF=BF= \(\frac{AB}{2}\)
Ta có : AB=AC (vì tam giác ABC cân tại A )
=) AF=BF=AE=EC (2)
Từ (1) và (2) =) AEDF là hình thoi
Xét hình thoi ABCD có hai đường chéo AC và BD vuông góc với nhau. Kẻ BH vuông góc với AD. Ta có SABCD = AD. BH
Trong tam giác vuông ABH vuông tại H thì:
BH ≤ AB (đường vuông góc ngắn hơn đường xiên)
Do đó: SABCD = AD. BH ≤ AD. AB = AB. AB = AB2
SABCDcó giá tị lớn nhất bằng AB2 khi ABCD là hình vuông.
Vây trong các hình thoi có cùng chu vi thì hình vuông có diện tích lớn nhất.
Đáp án cần chọn là: A