Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các đơn thức là: \(\dfrac{4}{5}x;\left( {\sqrt 2 - 1} \right)xy; - 3x{y^2};\dfrac{1}{2}{x^2}y;\dfrac{{ - 3}}{2}{x^2}y.\)
b) +Xét đơn thức \(\dfrac{4}{5}x\) có hệ số là \(\dfrac{4}{5}\), phần biến là \(x\).
+Xét đơn thức \(\left( {\sqrt 2 - 1} \right)xy\) có hệ số là \(\sqrt 2 - 1\), phần biến \(xy\).
+Xét đơn thức \( - 3x{y^2}\) có hệ số là \( - 3\), phần biến là \(x{y^2}\).
+Xét đơn thức \(\dfrac{1}{2}{x^2}y\) có hệ số là \(\dfrac{1}{2}\), phần biến \({x^2}y\).
+Xét đơn thức \( - \dfrac{3}{2}{x^2}y\) có hệ số là \( - \dfrac{3}{2}\), phần biến \({x^2}y\).
c) Tổng các đơn thức trên là đa thức:
\(\begin{array}{l}\dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy + \left( { - 3x{y^2}} \right) + \dfrac{1}{2}{x^2}y + \dfrac{{ - 3}}{2}{x^2}y\\ = \dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} + \left( {\dfrac{1}{2} + \dfrac{{ - 3}}{2}} \right){x^2}y\\ = \dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} - {x^2}y\end{array}\)
Bậc của đa thức trên là 1 + 2 = 3.
a: F=9/25x^2y^4*20/27x^3y=4/15x^5y^5
Bậc: 10
b: y=-x/3 và x+y=2
=>x+y=2 và -1/3x-y=0
=>x=3 và y=-1
Khi x=3 và y=-1 thì F=4/15*(-3)^5=-324/5
Lời giải:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\sqrt{y-2}\leq \frac{(y-2)+2}{2\sqrt{2}}=\frac{y}{2\sqrt{2}}\) \(\Rightarrow x\sqrt{y-2}\leq \frac{xy}{2\sqrt{2}}\)
\(\sqrt{x-3}\leq \frac{(x-3)+3}{2\sqrt{3}}=\frac{x}{2\sqrt{3}}\Rightarrow y\sqrt{x-3}\leq \frac{xy}{2\sqrt{3}}\)
Do đó:
\(M=\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}\leq \frac{\frac{xy}{2\sqrt{2}}+\frac{xy}{2\sqrt{3}}}{xy}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\)
Vậy \(M_{\max}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi \(x=6;y=4\)
\(\sqrt{y-2}\le\frac{y-2+1}{2}chứ?\)
cách cô em không hiểu ??
Từ \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
\(\Rightarrow\)\(x+y+z=xyz\)
Ta có : \(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
Tương tự : \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(z+x\right)}\); \(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(y+z\right)\left(y+x\right)}\)
Nên \(Q=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
\(Q=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)
Áp dụng BĐT \(\sqrt{A.B}\le\frac{A+B}{2}\left(A,B>0\right)\)
Dấu "=" xảy ra khi A = B :
Ta được :
\(Q\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy GTLN của \(Q=\frac{3}{2}\)khi \(x=y=z=\sqrt{3}\)
\(A=\dfrac{2\left(x^3+y^3\right)}{\left(x^4+y^2\right)\left(x^2+y^4\right)}=2.\dfrac{\left(x^3+y^3\right)}{x^4y^4+x^2y^2+x^6+y^6}\)
\(=2.\dfrac{\left(x^3+y^3\right)}{1+1+x^6+y^6}=2.\dfrac{x^3+y^3}{x^6+y^6+2x^3y^3}=2.\dfrac{x^3+y^3}{\left(x^3+y^3\right)^2}=\dfrac{2}{x^3+y^3}\left(1\right)\)
Áp dụng bất đẳng thức Cauchy ta có:
\(x^3+y^3+1\ge3\sqrt{xy.1}=3\)
\(\Rightarrow x^3+y^3\ge2\Rightarrow\dfrac{2}{x^3+y^3}\le1\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A\le1\)
Dấu "=" xảy ra khi x=y=1.
Vậy MaxA là 1, đạt được khi x=y=1.
Các đơn thức là: \( - x;\left( {3 + \sqrt 3 } \right)xy;0\)