\(|a|=b^2\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

\(|a|=b^2\left(b-c\right)\) Ta có : \(|a|\ge0\)

       \(\Rightarrow b^2\left(b-c\right)\ge0\)

+) Nếu \(b=0\Rightarrow b^2.\left(b-c\right)=0\)mà \(|a|=b^2\left(b-c\right)\)

 \(\Rightarrow|a|=0\)

 \(\Rightarrow a=0\)( vô lý vì chỉ có một số = 0 )

 \(\Rightarrow b=0\)( loại )    (1)

+) Nếu \(a=0\Rightarrow|a|=0\Rightarrow b^2\left(b-c\right)=0\)

         \(\Rightarrow\orbr{\begin{cases}b=0\left(loai\right)\\b-c=0\end{cases}}\)

Nếu b âm, c dương => b-c <0        ( mâu thuẫn )

Nếu b dương, c âm => b-c >0        ( mâu thuẫn )

      \(\Rightarrow a=0\)( loại )     (2)

Từ (1) và (2) \(\Rightarrow c=0\)

+) Nếu a dương mà c=0 

    \(\Rightarrow\)b là âm

     \(\Rightarrow b-c< 0\)

    \(\Rightarrow b^2\left(b-c\right)< 0\)

         mà \(b^2\left(b-c\right)\ge0\)       ( mâu thuẫn )

 \(\Rightarrow\)a là dương ( loại )

   \(\Rightarrow\)a chỉ có thể là âm, b dương và c=0

Vậy a là âm, b là dương và c=0

6 tháng 4 2016

I donnt no

15 tháng 8 2016

Số hữu tỉ dương: \(\frac{-3}{-5};\frac{2}{3}\)

Số hữu tỉ âm: \(\frac{-3}{7};\frac{1}{-5}\)

Số không phải là số hữu tỉ âm mà cũng không phải là số hữu tỉ âm: \(\frac{0}{-2}\)

15 tháng 8 2016

Dạ cám ơn bạn

 

16 tháng 6 2017

cho hỏi x đâu ra vậy

4 tháng 8 2018

hình như bn í lộn x là y hay sao ấy

9 tháng 2 2019

Ta có : \(a_1+(a_2+a_3+a_4)+...+(a_{11}+a_{12}+a_{13})+a_{14}+(a_{15}+a_{16}+a_{17})+(a_{18}+a_{19}+a_{20})< 0\)

\(a_1>0;a_2+a_3+a_4>0;....;a_{11}+a_{12}+a_{13}>0;a_{15}+a_{16}+a_{17}>0;a_{18}+a_{19}+a_{20}>0\Rightarrow a_{14}< 0\)

Cũng như vậy : \((a_1+a_2+a_3)+...+(a_{10}+a_{11}+a_{12})+(a_{13}+a_{14})+(a_{15}+a_{16}+a_{17})+(a_{18}+a_{19}+a_{20})< 0\)

\(\Rightarrow a_{13}+a_{14}< 0\)

Mặt khác : \(a_{12}+a_{13}+a_{14}>0\Rightarrow a_{12}>0\)

Từ các điều kiện \(a_1>0;a_{12}>0;a_{14}< 0\Rightarrow a_1\cdot a_{14}+a_{14}\cdot a_{12}< a_1\cdot a_{12}(đpcm)\)

P/S : Hoq chắc :>