Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://www.toanhocnhatrang.com/2015/05/bai-toan-so-298.html
Gọi A là tập hợp cách chọn đề có 3 câu dễ, 1 câu khó, 1 câu trung bình.
B là tập hợp cách chọn đề có 2 câu dễ, 2 câu khó, 1 câu trung bình
C là tập hợp cách chọn đề có 2 câu dễ, 1 câu khó, 2 câu trung bình
D là tập hợp cách chọn đề thỏa mãn yêu cầu đề ra. Ta có:
D = A \(\cup\) B \(\cup\) C
ngoài ra A,B,C đôi một không giao nhau. Theo quy tắc cộng ta có
\(\left|D\right|\) = \(\left|A\right|\) + \(\left|B\right|\) + \(\left|C\right|\) (1)
Theo quy tắc nhân ta có
\(\left|A\right|\) = \(C_{15}^3\).\(C_5^1\).\(C_{10}^1\) = 22750
\(\left|B\right|\) = \(C_{15}^2\).\(C_5^2\).\(C_{10}^1\) = 10500
\(\left|C\right|\) = \(C_{15}^2\).\(C_5^1\).\(C_{10}^2\) = 23625
Thay vào (1) ta có \(\left|D\right|\) = 56875
Vậy có 56875 cách chọn đề kiểm tra.
Số cách chọn ra 10 câu hỏi bất kỳ trong số 20 câu hỏi đã cho là .
+ Tiếp theo ta đếm số cách chọn ra 10 câu hỏi mà không có đủ cả ba loại câu hỏi ở trên:
Phương án 1: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi dễ và trung bình: cách.
Phương án 2: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi dễ và khó: cách.
Phương án 1: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi trung bình và khó: cách.
Từ đó suy ra số lượng đề thỏa mãn yêu cầu có thể lập được là:
Chọn A.
Có hai phương án xây dựng đề kiểm tra như sau:
· Phương án 1: Đề gồm 1 câu hỏi dễ và 2 câu hỏi khó
Số cách chọn 1 câu hỏi dễ từ 6 câu hỏi dễ là C 6 1 , số cách chọn 2 câu hỏi khó từ 4 câu hỏi khó là C 4 2 .
Theo quy tắc nhân, số cách tạo đề kiểm tra của phương án này là C 6 1 . C 4 2 = 36
· Phương án 2: Đề gồm 2 câu hỏi dễ và 1 câu hỏi khó.
Số cách chọn 2 câu hỏi dễ từ 6 câu hỏi dễ là C 6 2 , số cách chọn 1 câu hỏi khó từ 4 câu hỏi khó là C 4 1 .
Theo quy tắc nhân, số cách tạo đề kiểm tra của phương án này là C 6 2 . C 4 1 = 60
Vậy theo quy tắc cộng thì số đề kiểm tra có thể lập được là : 36 + 60 = 96.
Chọn D.
* Loại 1: Chọn 10 câu tùy ý trong 20 câu có C 20 10 cách.
* Loại 2: Chọn 10 câu có không quá 2 trong 3 loại dễ, trung bình và khó.
+) Chọn 10 câu dễ và trung bình trong 16 câu có C 16 10 cách.
+) Chọn 10 câu dễ và khó trong 13 câu có C 13 10 cách.
+) Chọn 10 câu trung bình và khó trong 11 câu có C 11 10 cách.
Vậy có C 20 10 − C 16 10 + C 13 10 + C 11 10 = 176451 đề kiểm tra thỏa mãn đầu bài
Chọn đáp án C
Đáp án D.
- Loại 1: Chọn 10 câu tùy ý có cách.
- Loại 2: Chọn 10 câu có không quá 2 trong 3 loại dễ, trung bình, khó.
+ Chọn 10 câu dễ và trung bình trong 16 câu có cách.
+ Chọn 10 câu dễ và khó trong 12 câu có cách.
+ Chọn 10 câu trung bình và khó trong 12 câu có cách.
Vậy số cách chọn đề kiểm tra theo yêu cầu đề bài là:
Ít nhất 1 câu hình học, nhiều nhất là 3 câu hình học, bởi giới hạn chỉ được bốc 3 câu hỏi
Khong gian mau: \(n\left(\Omega\right)=C^3_{15}\)
TH1: Bốc 1 câu hình học và 2 câu đại số
\(C^1_5.C^2_{10}\)
TH2: Bốc 2 câu hình học và 1 câu đại số
\(C^2_5.C^1_{10}\)
TH3: Bốc 3 câu hình học
\(C^3_5\)
\(\Rightarrow C^1_5.C^2_{10}+C^2_5.C^1_{10}+C^3_5=..\)
\(p\left(A\right)=\dfrac{C^1_5.C^2_{10}+C^2_5.C^1_{10}+C^3_5}{C^3_{15}}=...\)
Ω: "Chọn 3 câu hỏi từ 15 câu."
⇒ n(Ω) = \(C^3_{15}=455\)
A: "Chọn được ít nhất 1 câu hỏi Hình học."
⇒ \(\overline{A}\): "Không chọn được câu Hình học nào."
\(\Rightarrow n\left(\overline{A}\right)=C^3_{10}=120\)
\(\Rightarrow P\left(\overline{A}\right)=\dfrac{120}{455}=\dfrac{24}{91}\)
\(\Rightarrow P\left(A\right)=1-P\left(\overline{A}\right)=\dfrac{67}{91}\)
Bạn tham khảo nhé!
TH1: chọn \(1\)câu khó từ \(5\)câu: \(C^1_5\).
Chọn \(9\)câu trong đó có cả câu trung bình và câu dễ.
Ta sử dụng phần bù. Số cách là: \(C^9_{45}-C^9_{20}-C^9_{25}\).
TH cách số câu khó từ \(2\)đến \(5\)ta làm tương tự.
Khi đó có tổng số cách chọn \(10\)câu sao cho đủ 3 loại câu hỏi là:
\(C^1_5\left(C^9_{45}-C^9_{20}-C^9_{25}\right)+C^2_5\left(C^8_{45}-C^8_{20}-C^8_{25}\right)+C^3_5\left(C^7_{45}-C^7_{20}-C^7_{25}\right)\)
\(+C^4_5\left(C^6_{45}-C^6_{20}-C^6_{25}\right)+C^5_5\left(C^5_{45}-C^5_{20}-C^5_{25}\right)=7052230625\)