Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi n là số người trong bữa tiệc
gọi \(a_i\text{ là số cái bắt tay của người thứ i với tất các những người khác}\)
ta có \(\Sigma_{i=1}^n\text{ }a_i\text{ là một số chẵn }\)( do mỗi cái bắt tay đều được tính bởi cả hai người )
mà tổng số cái bắt tay của người bắt tay với chẵn người là số chẵn
nên tổng số cái bắt tay của người bắt tay với lẻ người cũng là số chẵn
nên phải có chẵn người trong nhóm bắt tay với lẻ người
vậy ta có điều phải chứng minh
Giả sử đa diện (H)(H) có các đỉnh là A1,…AdA1,…Ad, gọi m1,…mdm1,…md lần lượt là số các mặt của (H)(H) nhận chúng là đỉnh chung, ở đó m1,…mdm1,…md là những số lẻ.
Như vậy mỗi đỉnh AkAk có mkmk cạnh đi qua.
Ta có: đỉnh A1A1 có m1m1 cạnh đi qua.
đỉnh A2A2 có m2m2 cạnh đi qua.
...
đỉnh AdAd có mdmd cạnh đi qua.
Do đó số các cạnh (có thể trùng nhau) của đa diện là m1+m2+...+mdm1+m2+...+md.
Tuy nhiên, do mỗi cạnh là cạnh chung của đúng hai mặt nên số cạnh ở trên được đếm hai lần.
Vậy số cạnh thực tế của (H)(H) bằng
c=12(m1+m2+...+md)c=12(m1+m2+...+md)
Vì cc là số nguyên, m1,…mdm1,…md là những số lẻ nên dd phải là số chẵn.
Ví dụ : Hình chóp ngũ giác.
Đỉnh S là đỉnh chung của 5 mặt, tất cả các đỉnh còn lại là đỉnh chung của 3 mặt, hình chóp ngũ giác có 6 đỉnh
giup mình cày Sp vơi
TL :
Gọi số cạnh của khối đa diện là \(C\), số đỉnh là \(Đ\). Vì mỗi đỉnh là đỉnh chung của ba cạnh và mỗi cạnh có \(2\)đỉnh nên \(3Đ=2C\)do đó \(Đ\) là sỗ chẵn.
HT
a) Ta có tập xác định của cả hai hàm số \(f\left(x\right),g\left(x\right)\) đểu là \(\mathbb{R}\)
Mặt khác:
\(f\left(-x\right)=\dfrac{a^{-x}+a^{-x}}{2}=f\left(x\right);g\left(x\right)=\dfrac{a^{-x}-a^x}{2}=-g\left(x\right)\)
Vậy \(f\left(x\right)\) là hàm số chẵn, \(g\left(x\right)\) làm hàm số lẻ
b) Ta có :
\(f\left(x\right)=\dfrac{a^x+a^{-x}}{2}\ge\sqrt{a^xa^{-x}}=1,\forall x\in\mathbb{R}\)
và :
\(f\left(0\right)=\dfrac{a^0+a^0}{2}=1\)
Vậy :
\(minf\left(x\right)=f\left(0\right)=1\)
y = 2x2 + 2mx + m -1 (Cm). Đây là hàm số bậc hai, đồ thị là parabol quay bề lõm lên phía trên.
a) m = 1 ⇒ y = 2x2 + 2x
Tập xác định D = R
\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty\)
Bảng biến thiên:
Đồ thị hàm số:
b) Tổng quát y = 2x2 + 2mx + m -1 có tập xác định D = R
y′=4x+2m=0⇔\(x=-\dfrac{m}{2}\).
Suy ra y’ > 0 với \(x>-\dfrac{m}{2}\) và \(y'< 0\) với \(x< -\dfrac{m}{2}\) tức là hàm số nghịch biến trên \(\left(-\infty;\dfrac{-m}{2}\right)\) và đồng biến trên \(\left(-\dfrac{m}{2};+\infty\right)\)
i) Để hàm số đồng biến trên khoảng (-1, +∞) thì phải có điều kiện (−1,+∞)∈(−\(\dfrac{m}{2}\),+∞)
Hay \(-\dfrac{m}{2}< -1\)\(\Leftrightarrow m>2\)
ii) Hàm số đạt cực trị tại \(x=\dfrac{m}{2}\)
Để hàm số đạt cực trị trong khoảng (-1, +∞), ta phải có:
\(-\dfrac{m}{2}\in\left(-1;+\infty\right)\) hay \(-\dfrac{m}{2}>-1\Leftrightarrow m< 2\).
c) (Cm) luôn cắt Ox tại hai điểm phân biệt
⇔ phương trình 2x2 + 2mx + m – 1 = 0 có hai nghiệm phân biệt.
Ta có:
Δ’ = m2 – 2m + 2 = (m-1)2 + 1 > 0 ∀m
Vậy (Cm) luôn cắt O x tại hai điểm phân biệt.
y’ = 3x2 – 2mx – 2 , ∆’ = m2 + 6 > 0 nên y’ = 0 có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.
Vậy hàm số luôn có một cực đại và một cực tiểu.