Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này bạn đổi điểm K thành điểm M là xong nha
Kẻ IG,IK,IH lần lượt vuông góc với AB,BC,AC
Kẻ MO,MD,ME lần lượt vuông góc với AB,BC,AC
Xét ΔBKI vuông tại K và ΔBGI vuông tại G có
BI chung
góc KBI=góc GBI
Do đó: ΔBKI=ΔBGI
Suy ra: IK=IG(1)
Xét ΔCKI vuông tại K và ΔCHI vuông tại H có
CI chung
góc KCI=góc HCI
Do dó: ΔCKI=ΔCHI
Suy ra: IK=IH(2)
Từ (1) và (2) suy ra IG=IH
mà I nằm trong ΔABC và IG,IH là các đường cao ứng với các cạnh AB,AC
nên AI là phân giác của góc BAC(3)
Xét ΔBOM vuông tại O và ΔBDM vuông tại D có
BM chung
góc OBM=góc DBM
Do đó: ΔBOM=ΔBDM
Suy ra: MO=MD(4)
Xét ΔMDC vuông tại D và ΔMEC vuông tại E có
CM chung
góc DCM=góc ECM
Do đó: ΔMDC=ΔMEC
Suy ra: MD=ME(5)
Từ (4) và (5) suy ra MO=ME
mà M nằm ngoài ΔABC và MO,ME là các đường cao ứng với các cạnh AB,AC
nên AM là phân giác của góc BAC(6)
Từ (3) và (6) suy ra A,I,M thẳng hàng
B A C D M N I 1 2 H
a) XÉT \(\Delta BAD\)VÀ \(\Delta MAD\)CÓ
\(\widehat{ABD}=\widehat{AMD}=90^o\)
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
AD LÀ CẠNH CHUNG
=>\(\Delta BAD\)=\(\Delta MAD\)( CH-GN)
B) VÌ \(\Delta BAD\)=\(\Delta MAD\)(CMT)
\(\Rightarrow BA=MA\)HAI CẠNH TƯƠNG ỨNG
\(\Rightarrow\Delta ABM\) CÂN TẠI A
MÀ \(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
=> AI LÀ PHÂN GIÁC CỦA \(\widehat{BAM}\)
MÀ TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG TRUNG TRỰC
=> AI LÀ ĐƯỜNG TRUNG TRỰC CỦA ĐỌAN BM
MÀ I NẰM TRÊN ĐỌAN AD
=> AD LÀ ĐƯỜNG TRUNG TRỰC CỦA ĐỌAN BM
C)
chứng minh DH=DB=DM
sao đó là mà D là điểm nằm trog tam giác acn
=> d cách đều các cạnh tam giác acn
Tổng ba góc tại mỗi đỉnh chung của ba tam giác bằng 180 độ.
Ba điểm A,B,C có thẳng hàng.