Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x+5}\) xác định khi \(2x+5\ge0\Rightarrow2x\ge-5\Rightarrow x\ge-\dfrac{5}{2}\)
\(\sqrt{2x+5}\le0\Leftrightarrow2x+5\le0\Leftrightarrow2x\le-5\Leftrightarrow x\ge\dfrac{-5}{2}\)
\(\Rightarrow\) Đáp án: A
ĐKXĐ: \(2x-3\ge0\\ \Rightarrow2x\ge0+3\\ \Rightarrow2x\ge3\\ \Rightarrow x\ge\dfrac{3}{2}\left(A\right)\)
\(\sqrt{3-2x}\) xác định khi \(3-2x\ge0\Rightarrow2x\le3-0\Rightarrow2x\le3\Rightarrow x\le\dfrac{3}{2}\left(D\right)\)
Ta có:
\(A=\dfrac{\sqrt{x}-x}{\sqrt{x}-1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-\sqrt{x}\)
Vậy \(A=-\sqrt{x}\)
\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-\sqrt{x}\)
Đk: tự tìm
\(pt\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}+\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{x-4}\left(\sqrt{x+4}+1\right)=0\)
Dễ thấy: \(\sqrt{x+4}\ge0\forall x\)
\(\Rightarrow\sqrt{x+4}+1\ge1>0\forall x\) (vô nghiệm)
\(\Rightarrow\sqrt{x-4}=0\Rightarrow x-4=0\Rightarrow x=4\)
a: ĐKXĐ: \(x\ge\dfrac{3}{2}\)
c: ĐKXĐ: \(x< -\dfrac{5}{3}\)
d: ĐKXĐ: \(x\in R\)
e: ĐKXĐ: \(x< -\dfrac{1}{2}\)
f: ĐKXĐ: \(x\ne-1\)
g: ĐKXĐ: \(x\in R\)
h: ĐKXĐ: \(x>-\dfrac{1}{2}\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x\le\dfrac{2}{5}\\x\ne0\end{matrix}\right.\)
a) ĐKXĐ: \(2x-3\ge0\Rightarrow x\ge\dfrac{3}{2}\)
b) ĐKXĐ: \(-\dfrac{2}{x}+5\ge0\Rightarrow x\ge\dfrac{2}{5}\)
c)ĐKXĐ: \(-3x-5>0\Rightarrow x>-\dfrac{5}{3}\)
d) ĐKXĐ: \(4x^2-4x+1\ge0\Rightarrow\left(2x-1\right)^2\ge0\) (luôn đúng)
a) Ta có: \(\sqrt{4x^2+4x+1}-2=x\)
\(\Leftrightarrow\left|2x+1\right|=x+2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+2\left(x\ge-\dfrac{1}{2}\right)\\2x+1=-x-2\left(x< -\dfrac{1}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=2-1\\2x+x=-2-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)