K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

Gọi G là trọng tâm tam giác ABC

\(\Rightarrow T=\sum\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\cdot\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=3MG^2+\dfrac{4}{9}\cdot\left(m_a^2+m_b^2+m_c^2\right)=3MG^2+\dfrac{4}{9}\cdot\left(\dfrac{2b^2+2c^2-a^2}{4}+\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2b^2+2a^2-c^2}{4}\right)\) = \(3MG^2+\dfrac{1}{3}\left(a^2+b^2+c^2\right)\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)\) Dấu = xảy ra \(\Leftrightarrow M\equiv G\)

NV
12 tháng 4 2021

15.

\(\Delta'=m^2+m-2>0\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\)

Đáp án B

16.

\(\dfrac{\pi}{2}< a< \pi\Rightarrow\dfrac{\pi}{4}< \dfrac{a}{2}< \dfrac{\pi}{2}\Rightarrow\dfrac{\sqrt{2}}{2}< sin\dfrac{a}{2}< 1\Rightarrow\dfrac{1}{2}< sin^2\dfrac{a}{2}< 1\)

\(sina=\dfrac{3}{5}\Leftrightarrow sin^2a=\dfrac{9}{25}\Leftrightarrow4sin^2\dfrac{a}{2}.cos^2\dfrac{a}{2}=\dfrac{9}{25}\)

\(\Leftrightarrow sin^2\dfrac{a}{2}\left(1-sin^2\dfrac{a}{2}\right)=\dfrac{9}{100}\Leftrightarrow sin^4\dfrac{a}{2}-sin^2\dfrac{a}{2}+\dfrac{9}{100}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin^2\dfrac{a}{2}=\dfrac{1}{10}< \dfrac{1}{2}\left(loại\right)\\sin^2\dfrac{a}{2}=\dfrac{9}{10}\end{matrix}\right.\)

\(\Rightarrow sin\dfrac{a}{2}=\dfrac{3\sqrt{10}}{10}\)

NV
12 tháng 4 2021

17.

Áp dụng công thức trung tuyến:

\(AM=\dfrac{\sqrt{2\left(AB^2+AC^2\right)-BC^2}}{2}=\dfrac{\sqrt{201}}{2}\)

18.

\(\Leftrightarrow x^2+2x+4>m^2+2m\) ; \(\forall x\in\left[-2;1\right]\)

\(\Leftrightarrow m^2+2m< \min\limits_{\left[-2;1\right]}\left(x^2+2x+4\right)\)

Xét \(f\left(x\right)=x^2+2x+4\) trên \(\left[-2;1\right]\)

\(-\dfrac{b}{2a}=-1\in\left[-2;1\right]\) ; \(f\left(-2\right)=4\) ; \(f\left(-1\right)=3\) ; \(f\left(1\right)=7\)

\(\Rightarrow\min\limits_{\left[-2;1\right]}\left(x^2+2x+4\right)=f\left(1\right)=3\)

\(\Rightarrow m^2+2m< 3\Leftrightarrow m^2+2m-3< 0\)

\(\Rightarrow-3< m< 1\Rightarrow m=\left\{-2;-1;0\right\}\)

Đáp án C

3 tháng 2 2023

Lỗi

a: =>x^2+5x-6>=0

=>(x+6)(x-1)>=0

=>x>=1 hoặc x<=-6

b: -5x^2+12x+6>0

=>5x^2-12x-6<0

=>\(\dfrac{6-\sqrt{66}}{5}< x< \dfrac{6+\sqrt{66}}{5}\)

c: =>7x^2-8x-12>=0

=>7x^2-14x+6x-12>=0

=>(x-2)(7x+6)>=0

=>x>=2 hoặc x<=-6/7

d: =>(x+2)(x+3)>=0

=>x>=-2 hoặc x<=-3

10 tháng 1 2021

Lấy phần cần lấy thôi nha, t hết giấy nháp rồi :)))

4 tháng 7 2021

Câu 2 : C

Câu 3 : A

Câu 4 : C

Câu 5 : C

Câu 6 : B

Câu 7 : C

Câu 8 : D

Câu 9 : B

4 tháng 7 2021

Câu 2: C

Pt\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x^2+5x-2=\left(x-2\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\9x=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x=\dfrac{6}{9}\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)

Câu 3: A

\(\Delta:3x+4y-11=0\)

\(d_{\left(M;\Delta\right)}=\dfrac{\left|3.1+4.-1-11\right|}{\sqrt{3^2+4^2}}=\dfrac{12}{5}\)

Câu 4: Ko có đ/a

Do \(\dfrac{\pi}{2}< \alpha< \pi\Rightarrow tan\alpha< 0;cot\alpha< 0;cos\alpha< 0\)

\(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\)\(\Rightarrow cot\alpha=\dfrac{-\sqrt{21}}{2}\)

Câu 5:C

Câu 6:B

Câu 7: A

Có nghiệm khi \(\left(m;+\infty\right)\cup\left[-2;2\right]\ne\varnothing\) 

\(\Leftrightarrow m< 2\)

Câu 8:D

Câu 9: B

\(cos2\alpha=2cos^2\alpha-1=-\dfrac{23}{25}\)

Câu 10:D

NV
15 tháng 3 2022

Pt có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow2\left(m+3\right)< 0\)

\(\Rightarrow m< -3\)

12 tháng 3 2022

\(\Delta=\left(m+3\right)^2+4\left(m+1\right)\left(m-3\right)\)

\(=m^2+6m+9+4m^2-8m-12=5m^2-2m-3\)

\(=\left(m-1\right)\left(5m+3\right)\)

Để pt có 2 nghiệm pb khi \(\left(m-1\right)\left(5m+3\right)>0\)

 TH1 : \(\left\{{}\begin{matrix}5m+3>0\\m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{3}{5}\\m>1\end{matrix}\right.\)

TH2 : \(\left\{{}\begin{matrix}5m+3< 0\\m-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -\dfrac{3}{5}\\m< 1\end{matrix}\right.\Leftrightarrow m< -\dfrac{3}{5}\)

12 tháng 3 2022

à bạn ơi, b^2-4ac vậy đáng lẽ phải là (m+3)^2 - 4(m+1)(m-3) chứ ạ??

NV
24 tháng 6 2021

1.

\(x^2+y^2-2x+4y+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=4\)

Đường tròn tâm \(I\left(1;-2\right)\) bán kính \(R=2\)

2.

\(\left\{{}\begin{matrix}3x-7>0\\x+8>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{3}\\x>-8\end{matrix}\right.\)

Lấy giao của 2 tập trên ta được nghiệm của BĐT là: 

\(\left(\dfrac{7}{3};+\infty\right)\)

3.

Pt đã cho có 2 nghiệm trái dấu khi và chỉ khi:

\(ac< 0\Leftrightarrow1.\left(1-3m\right)< 0\)

\(\Leftrightarrow m>\dfrac{1}{3}\)

NV
24 tháng 6 2021

4.

Lập bảng xét dấu:

x x-1 x+2 f(x) -2 1 0 0 0 - - + - + + + - +

Từ bảng xét dấu ta được nghiệm của BPT:

\(\left(-\infty;-2\right)\cup[1;+\infty)\)

5.

Hàm số có 2 nghiệm \(x=\left\{1;2\right\}\) đồng thời 2 khoảng chứa vô cực mang dấu âm nên có dạng:

\(f\left(x\right)=-\left(x-1\right)\left(x-2\right)=\left(x-1\right)\left(-x+2\right)\)

NV
21 tháng 11 2021

a.

Phương trình có 2 nghiệm trái dấu khi và chỉ khi:

\(ac< 0\Leftrightarrow1.\left(2m+1\right)< 0\)

\(\Leftrightarrow m< -\dfrac{1}{2}\)

b.

Phương trình có 2 nghiệm nằm cùng phía trục Oy \(\Leftrightarrow\) phương trình có 2 nghiệm cùng dấu

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(2m+1\right)>0\\x_1x_2=2m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m>-\dfrac{1}{2}\end{matrix}\right.\)