Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ ABM(<A=90°(gt)) và ∆NDM(<N=90°(gt)), ta có:
<BMA=<DMN( đối đỉnh)
BM=DM(gt)
⟹∆ABM=∆NDM(c.h=g.n)
b) Ta có:
<ABM=<MDN(Vì ∆ABM=∆NDM(CM ở a))
mà <ABM=<CBM(gt)
⟹<MDN=<CBM
⟹∆EBD cân tại E
⟹ BE=DE
c)Áp dụng định lý Py-ta-go vào ∆ABC(<A=90°(gt)), ta có:
BC2=AB2+AC2
⟹AB2=BC2-AC2=152-122=225-144=81
⟹AB=√81=9cm
mà AB=DN(Vì ∆ABM=∆NDM(CM ở a))
⟹AB=DN=9cm
10.
\(H\left(x\right)=-5x^4+10x^3-15x+1\)
\(=-5x\left(x^3-2x^2+3\right)+1\)
\(=-5x.0+1\)
\(=1\)
9.
\(P\left(x\right)-Q\left(x\right)=\left(1-a\right)x^3+x^2+x-6\)
\(P\left(x\right)-Q\left(x\right)\) là đa thức bậc 3 khi và chỉ khi \(1-a\ne0\)
\(\Rightarrow a\ne1\)
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
b: Ta có: ΔABE=ΔACD
nên BE=CD
c: Xét ΔDBC và ΔECB có
DB=EC
DC=EB
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{KCB}=\widehat{KBC}\)
hay ΔKBC cân tại K
d: Xét ΔABK và ΔACK có
AB=AC
BK=CK
AK chung
Do đó: ΔABK=ΔACK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
Bạn cần bài nào ạ? Nếu bạn cần giúp tất cả thì bạn tách ra từng CH khác nhau nhé!
Sửa đề: 0,01+0,02+...+0,09+0,10+...+0,99+1
Số số hạng là (1-0,01):0,01+1=100(số)
Tổng là (1+0,01)*100/2=1,01*50=50,5
ta có : Do NB song song với MA nên
\(\hept{\begin{cases}\widehat{ABN}+\widehat{MAB}=180^0\\\widehat{ABN}-\widehat{MAB}=40^0\end{cases}}\Rightarrow2\widehat{MAB}=180^0-40^0=140^0\)
Nên \(\widehat{MAB}=70^0\)
3A=1.2.(3-0)+2.3.(4-1)+...+n(n+1)[(n-1)(n+2)]
3A=1.2.3-0.1.2+2.3.4-1.2.3+...n.(n+1)(n+2)-(n-1)n(n+1)
A=n(n+1)(n+2):3
Câu 27:
a: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
Do đó: ΔCAB=ΔCAD
=>CB=CD
=>ΔDBC cân tại C
b: Xét ΔMCB và ΔMDE có
\(\widehat{MCB}=\widehat{MDE}\)(hai góc so le trong, BC//DE)
MC=MD
\(\widehat{CMB}=\widehat{DME}\)(hai góc đối đỉnh)
Do đó: ΔMCB=ΔMDE
=>BC=DE
Xét ΔEDB có ED+DB>BE
mà ED=BC
nên BD+BC>BE
Câu 26:
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Xét ΔABC có AB<AC<BC
mà \(\widehat{ACB};\widehat{ABC};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
b: xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>DF=DC
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE