Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(AB=OA-OB=a-b\left(cm\right)\)
b, Có lẽ là M trên tia Ox .
Ta có : \(OM=\dfrac{1}{2}\left(a+b\right)\)
=> M là trung điểm của AB .
a. Khoảng cách giữa các điểm a và b trên trục số khi a=-3;b=5 là :
|a-b| = |-3-5| = |-8| = 8
Vậy khoảng cách giữa các điểm a và b trên trục số khi a=-3;b=5 là 8
b. Khoảng cách giữa các điểm a và b trên trục số khi a=15;b=37 là :
|a-b| = |15-37| = |-22| = 22
Vậy khoảng cách giữa a và b trên trục số khi a=15;b=37 là 22.
Bài 2:
Tổng các số nghịch đảo là:
\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+\dfrac{1}{14\cdot17}+\dfrac{1}{17\cdot20}\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{10-1}{20}=\dfrac{9}{60}=\dfrac{3}{20}\)
a) Xác định các điểm –a, -b trên trục số:
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:
a ở bên trái trục số ⇒ a là số nguyên âm nên a < 0.
Do đó: -a = |-a| = |a| > 0.
b ở bên phải trục số ⇒ b là số nguyên dương nên b = |b| = |-b| > 0 và -b < 0.
a) Xác định các điểm –a, -b trên trục số:
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:
a ở bên trái trục số => a là số nguyên âm nên a < 0.
Do đó: -a = |a| = |a| > 0.
b ở bên phải trục số => b là số nguyên dương nên b = |b| = |-b| > 0 và -b < 0.
Bài giải:
a) Xác định các điểm –a, -b trên trục số:
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:
a ở bên trái trục số => a là số nguyên âm nên a < 0.
Do đó: -a = |a| = |a| > 0.
b ở bên phải trục số => b là số nguyên dương nên b = |b| = |-b| > 0 và -b < 0.