Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Trên tia Ox, ta có: OM<ON
nên M nằm giữa O và N
=>OM+MN=ON
=>MN+4=8
=>MN=4(cm)
b: Ta có: M nằm giữa O và N
MN=MO(=4cm)
Do đó: M là trung điểm của ON
c: Trên tia Ox, ta có: OP<OM
nên P nằm giữa O và M
=>OP+PM=OM
=>PM+2=4
=>PM=2(cm)
Ta có: P nằm giữa O và M
mà OP=PM(=2cm)
nên P là trung điểm của OM
Trên tia Ox, ta có: OM<OQ
nên M nằm giữa O và Q
=>OM+MQ=OQ
=>MQ+4=6
=>MQ=2(cm)
Vì MP=MQ(=2cm)
nên M là trung điểm của PQ
Trên tia Ox, ta có: OQ<ON
nên Q nằm giữa O và N
=>OQ+QN=ON
=>QN+6=8
=>QN=2(cm)
Vì MQ=QN(=2cm)
nên Q là trung điểm của MN
bạn tự vẽ hình nha
a) Ta có:
\(\widehat{xOz}+\widehat{zOy}=90^o\)
Mà \(\widehat{xOz}=\widehat{nOy}\left(gt\right)\) ; Mà \(\widehat{zOy}=\widehat{xOm}\left(gt\right)\)
=>\(\widehat{nOy}+\widehat{zOy}=90^o\) ; =>\(\widehat{xOz}+\widehat{xOm}=90^o\)
\(\widehat{nOz}=90^o\) ; \(\widehat{zOm}=90^o\)
Ta có:
\(\widehat{nOm}=\widehat{nOz}+\widehat{zOm}=90^o+90^o=180^o\)
=> Om,On là hai tia đối nhau
b) Ta có:
\(Oz⊥MN\left(\widehat{nOz}=\widehat{mOz}=90^o\right)\)
Mà \(OM=ON\left(gt\right)\)
=> Oz là đường trung trực của MN
a: Xét ΔMOP và ΔNOP có
OM=ON
\(\widehat{MOP}=\widehat{NOP}\)
OP chung
Do đó: ΔMOP=ΔNOP
b: Ta có: ΔMOP=ΔNOP
Suy ra: PM=PN
hay P là trung điểm của MN
c: Ta có: OM=ON
nên O nằm trên đường trung trực của MN(1)
Ta có: P là trung điểm của MN
nên P nằm trên đường trung trực của MN(2)
từ (1) và (2) suy ra OP là đường trung trực của MN
hay OP\(\perp\)MN
Xét ΔOQM và ΔOPN có
OQ=OP
góc O chung
OM=ON
=>ΔOQM=ΔOPN
=>góc OQM=góc OPN
#\(N\)
`a,` Xét Tam giác `OMP` và Tam giác `ONP` có:
`OM = ON (g``t)`
\(\widehat{MOP}=\widehat{NOP}\) `(` tia phân giác \(\widehat{xOy}\) `)`
`OP` chung
`=>` Tam giác `OMP =` Tam giác `ONP (c-g-c)`
`b,` Vì Tam giác `OMP =` Tam giác `ONP (a)`
`=> MP = NP (` 2 cạnh tương ứng `)`
`=>`\(\widehat{MPH}=\widehat{NPH}\) `(` 2 góc tương ứng `)`
Xét Tam giác `MPH` và Tam giác `NPH` có:
`MP = NP (CMT)`
\(\widehat{MPH}=\widehat{NPH}(CMT)\)
`PH` chung
`=>` Tam giác `MPH = `Tam giác `NPH (c-g-c)`
`=>`\(\widehat{MHP}=\widehat{NHP}\) `(` 2 góc tương ứng `)`
Mà `2` góc này ở vị trí kề bù
`=>`\(\widehat{MHP}+\widehat{NHP}=180^0\)
`=>` \(\widehat{MHP}=\widehat{NHP}=\)\(\dfrac{180}{2}=90^0\)
`=>`\(MN\perp OP\left(đpcm\right)\)