Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
∠ABC=90°−60°=30°,∠ACB=90°+30°=120°⇒∠CAB=180°−30°−120°=30°⇒∠ABC=∠CAB∠���=90°−60°=30°,∠���=90°+30°=120°⇒∠���=180°−30°−120°=30°⇒∠���=∠���
⇒ΔCAB⇒���� cân tại C⇒AC=BC=100m⇒��=��=100�
Ta có:h=AC.sin30°=100.12=50m
gọi đỉnh quả đôi là C tam giac ABC cân tại C có CB=CA =100m, đồi cao 100/2 = 50m ( chắc ăn đ)
Phương pháp giải
Sử dụng: Trong tam giác vuông, cạnh góc vuông bằng cạnh góc vuông kia nhân tan góc đối.
Đặt tên như hình vẽ thì chiều cao của tháp là đoạn BDBD
Xét tam giác ABCABC vuông tại AA có AC=DE=150m;ˆC=200AC=DE=150m;C^=200 nên
AB=150.tan20∘≈54,596(m)AB=150.tan20∘≈54,596(m)
Chiều cao của cột ăng-ten là:
BD=AB+ADBD=AB+AD=54,596+1,5=56,096(m).
\(tanC=\dfrac{AB}{AC}\Rightarrow AB=AC\cdot tanC=100\cdot tan40^0\approx84m\)
Chọn A
Đặt tam giác ABC vuông tại A với B là đỉnh tháp
Áp dụng tslg trong tam giác ABC vuông tại A:
\(tanC=\dfrac{AB}{AC}\)
\(\Rightarrow tan30^0=\dfrac{26}{AC}\)
\(\Rightarrow AC=\dfrac{26}{tan30^0}=26\sqrt{3}\left(m\right)\)