K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

Ta có:

\(\left\{{}\begin{matrix}a^2+b=b^2+c\\b^2+c=c^2+a\\a^2+b=c^2+a\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a^2-b^2=c-b\\b^2-c^2=a-c\\a^2-c^2=a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=c-b\\\left(b-c\right)\left(b+c\right)=a-c\\\left(a-c\right)\left(a+c\right)=a-b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{c-b}{a-b}\\b+c=\dfrac{a-c}{b-c}\\a+c=\dfrac{a-b}{a-c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b-1=\dfrac{c-a}{a-b}\\b+c-1=\dfrac{a-b}{b-c}\\a+c-1=\dfrac{c-b}{a-c}\end{matrix}\right.\)

\(\Rightarrow T=\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)\)

\(=\dfrac{\left(c-a\right)\left(a-b\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

30 tháng 9 2021

Tham khảo:

https://olm.vn/hoi-dap/detail/264403587120.html

NV
14 tháng 1

Hiển nhiên \(a;b;c\ne0\)

Đặt \(a^2-ab=b^2-bc-c^2-ca=k\ne0\) (do a;b;c phân biệt và khác 0)

\(\Rightarrow\left\{{}\begin{matrix}a-b=\dfrac{k}{a}\\b-c=\dfrac{k}{b}\\c-a=\dfrac{k}{a}\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=\dfrac{k}{a}+\dfrac{k}{b}+\dfrac{k}{c}\)

\(\Rightarrow0=\dfrac{k}{a}+\dfrac{k}{b}+\dfrac{k}{c}\)

\(\Rightarrow k\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{0}{k}=0\)

BÀI 1 :Cho parabol y=x^2 và đường thẳng d:y= -2x+m 1. Với m = 3, hãy: a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ. b) Tìm tọa độ các giao điểm M và N của (d) và (P). c) Tính độ dài đoạn thẳng MN. 2. Tìm các giá trị của m để: a) (d) và (P) tiếp xúc nhau. b) (d) cắt (P) tại hai điểm phân biệt. BÀI 2: Trong mặt phẳng tọa độ Oxy cho M(1;2) và đường thẳng d: y=-3x+1 1. Viết phương trình đường thẳng (d')...
Đọc tiếp

BÀI 1 :Cho parabol y=x^2 và đường thẳng d:y= -2x+m

1. Với m = 3, hãy:

a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.

b) Tìm tọa độ các giao điểm M và N của (d) và (P).

c) Tính độ dài đoạn thẳng MN.

2. Tìm các giá trị của m để:

a) (d) và (P) tiếp xúc nhau.

b) (d) cắt (P) tại hai điểm phân biệt.
BÀI 2:

Trong mặt phẳng tọa độ Oxy cho M(1;2) và đường thẳng d: y=-3x+1

1. Viết phương trình đường thẳng (d') đi qua M và song song với (d).

2. Cho parabol P: y=mx^2. Tìm các giá trị của tham số m để (d) và (P) cắt nhau tại hai điểm phân biệt A, B nằm cùng phía đối với trục tung.
BÀI 3:

Cho parabol P: y=x^2 và đường thẳng d:y= 2mx-2m+3

a) Tìm tọa độ các điểm thuộc (P) biết tung độ của chúng bằng 2.

b) Chứng minh với mọi giá trị của tham số m thì đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt.

c) Gọi y1,y2 là tung độ các giao điểm của (d) và (P). Tìm các giá trị của tham số m để y1+y2<9
BÀI 4:

Cho parabol P:y=ã^2 và đường thẳng d:y= 2mx-m+2

1. Xác định tham số a biết (P) đi qua A(1;-1).

2. Biện luận số giao điểm của (P) và (d) theo tham số m.
BÀI 5:

Cho parabol P:y=x^2/2 và đường thẳng d:y= 1/2*x+2

1. Với n = 1, hãy:

a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.

b) Tìm tọa độ các giao điểm A và B của (d) và (P).

c) Tính diện tích tam giác AOB.

2. Tìm các giá trị của n để:

a) (d) và (P) tiếp xúc nhau.

b) (d) cắt (P) tại hai điểm phân biệt.

c) (d) cắt (P) tại hai điểm nằm về hai phía đối của trục Oy.

0

1: Thay x=-1 và y=1 vào (d), ta được:

-2(a+1)+15-2a=1

=>-2a+2+15-2a=1

=>-4a+17=1

=>-4a=-16

hay a=4

2: Phươg trình hoành độ giao điểm là:

\(x^2-\left(2a+2\right)x-15+2a=0\)

\(\text{Δ}=\left(2a+2\right)^2-4\left(2a-15\right)\)

\(=4a^2+8a+4-8a+60\)

\(=4a^2+64>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

2: Theo đề, ta có: \(x_1+x_2+x_1^2+x_2^2=2a+27\)

\(\Leftrightarrow\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2=2a+27\)

\(\Leftrightarrow2a+27=\left(2a+2\right)+\left(2a+2\right)^2-2\left(2a-15\right)\)

\(\Leftrightarrow4a^2+8a+4+2a+2-4a+30=2a+27\)

\(\Leftrightarrow4a^2+6a+36-2a-27=0\)

\(\Leftrightarrow4a^2+4a+9=0\)

hay \(a\in\varnothing\)

8 tháng 1 2020

buithianhtho, Vũ Minh Tuấn, Băng Băng 2k6, No choice teen, Akai Haruma, Nguyễn Thanh Hằng, Duy Khang,

@tth_new, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ, @Nguyễn Huy Thắng

Mn giúp e vs ạ! Cần gấp ạ!

Thanks nhiều lắm ạ!

12 tháng 1 2020

3a hình như là đề thi Phan Bội Châu, năm nào thì em ko nhớ.

21 tháng 11 2017

B1 : 

Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a

Tương tự b^2/c+a + c+a/4 >= b

c^2/a+b + a+b/4 >= c

=> VT + a+b+c/2 >= a+b+c

=> VT >= a+b+c/2 = VP 

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

k mk nha

2 tháng 5 2017

Câu 3/ \(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\)

\(\le\sqrt{1+2xz-2yt}+\sqrt{1-2xz+2yt}\)

\(\le\dfrac{1+1+2xz-2yt}{2}+\dfrac{1+1-2xz+2yt}{2}=1+1=2\)

2 tháng 5 2017

Đăng nhiều thế???