Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
xem lại đầu bài đi bạn ơi, phương trình đường thẳng sai rồi ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét phương trình hoành độ giao điểm
\(x^2=2mx+2\Leftrightarrow x^2-2mx-2=0\Rightarrow\Delta^'=m^2+2\ge2\)
Vậy P luôn cắt (d) tại 2 điểm phân biệt là A,B . giả sử phương trình có 2 nghiệm là \(x_2,x_1\). ta có
\(A\left(x_1,x_1^2\right)\Rightarrow OA=\sqrt{x_1^2+x_{ }_1^4}\);\(B\left(x_2,x_2^2\right)\Rightarrow OB=\sqrt{x_2^2+x_2^4}\)
theo giả thiết ta có :\(S=\frac{1}{2}OA.OB\Rightarrow\sqrt{x_1^2+x_1^4}.\sqrt{x^2_2+x^4_2}=4\sqrt{6}\)
\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(x_1^2+x^2_2\right)+\left(x_1x_2\right)^4=96\)
\(\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(-2x_2x_1+\left(x_1+x_2\right)^2\right)+\left(x_1x_2\right)^4=96\)
Theo vi ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2m\\x_1x=-2_2\end{cases}}\)\(4+4.\left(4+4m^2\right)+16=96\Leftrightarrow m^2=\frac{15}{4}\Rightarrow\orbr{\begin{cases}m=\frac{\sqrt{15}}{2}\\m=\frac{-\sqrt{15}}{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
aPt hoành độ giao điểm là x2=mx+1
<=>x2-mx-1=0
\(_{\Delta}\)=m2-4(-1)=m2+4\(\ge0\)\(\forall m\inℝ\)
=>đpcm
b viet=>x1x2=-1 => A và B nằm ở hai hướng khác nhau
tính (d) giao trục OY tại K
=>Soab=(OK.x1+OK.x2)/2 sau đó tính ra
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
![](https://rs.olm.vn/images/avt/0.png?1311)
cj ơi, nó có trog câu hỏi tương tự rồi ạ, cô Loan giải rồi ạ!!^^
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x2 = mx + 1
<=> x2 - mx - 1 = 0
$\Delta$Δ = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
Theo Vi - et ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(P\right):y=2x^2\)
\(d:y=mx+1\)
Xét phương trình: \(2x^2-mx-1=0\)có \(\Delta=m^2+8>0\forall m\)
Suy ra (P) và d luôn cắt nhau tại hai điểm phân biệt.
Giả sử \(x_1,x_2\)là hai nghiệm của PT trên, theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=\frac{m}{2}\\x_1x_2=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\frac{m^2+8}{4}\)
\(\Leftrightarrow\left|x_1-x_2\right|=\frac{\sqrt{m^2+8}}{2}\)
Xét hệ \(\hept{\begin{cases}x=0\\y=mx+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\), suy ra d cắt Oy tại M(0;1) \(\Rightarrow OM=1\)
Khi đó: \(S_{OAB}=\frac{1}{2}.1.\frac{\sqrt{m^2+8}}{2}=\frac{\sqrt{m^2+8}}{4}=\frac{3m}{2}\)
\(\Leftrightarrow\hept{\begin{cases}m>0\\m^2+8=36m^2\end{cases}}\Leftrightarrow m=\frac{2\sqrt{70}}{35}\)
*Phương trình hoành độ giao điểm của đường thẳng và Parabol là:
\(\dfrac{1}{4}x^2=mx+2\Leftrightarrow\dfrac{1}{4}x^2-mx-2=0\) (1)
Ta có: \(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{4}\cdot\left(-2\right)=m^2+2>0\forall m\)
nên (1) có 2 nghiệm phân biệt
Vậy (P) và (d) cắt nhau tại 2 điểm phân biệt
*Theo hệ thức vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=-2\end{matrix}\right.\)
...https://olm.vn/hoi-dap/detail/102321288521.html tham khảo ở đây