Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài đoạn thẳng AB là: \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\sqrt{\left[-1-\left(-4\right)\right]^2+\left(6-4\right)^2}=\sqrt{9+4}=\sqrt{13}\)
Mà CD = AB (vì tứ giác ABCD là hình bình hành) \(\Rightarrow CD=\sqrt{13}\)
Tương tự, ta cũng tính được độ dài đoạn AD là \(\sqrt{34}\)
Như vậy, ta có \(\hept{\begin{cases}CD=\sqrt{13}=\sqrt{\left(x_C-x_D\right)^2+\left(y_C-y_D\right)^2}\\AD=\sqrt{34}=\sqrt{\left(x_A-x_D\right)^2+\left(y_A-y_D\right)^2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{\left(1-x_D\right)^2+\left(1-y_D\right)^2}=\sqrt{13}\\\sqrt{\left(-1-x_D\right)^2+\left(6-y_D\right)^2}=\sqrt{34}\end{cases}}\)
Tới đây bạn tự giải nhé.
Hai đường chéo AC và BD vuông góc với nhau tại I.
- Đường thẳng AB có hệ số góc bằng 2, do đó ta có
tgα = 2 ⇒ α = 63 ° 26 ' (tính trên máy tính bỏ túi).
Suy ra ∠ (ABD) ≈ 63 ° 26 '
Tam giác ABD cân, nên cũng có ∠ (ADB) ≈ 63 ° 26 '
Từ đó suy ra ∠ (BAD) = 180 ° - 2. 63 ° 26 ' ≈ 53 ° 8 '
a) Để (d) đi qua M(2;5) thì Thay x=2 và y=5 vào (d), ta được:
\(2m\cdot2-2m+3=5\)
\(\Leftrightarrow4m-2m=5-3\)
\(\Leftrightarrow2m=2\)
\(\Leftrightarrow m=1\)
Vậy: Để (d) đi qua M(2;5) thì m=1
b) Phương trình hoành độ của (d) và (P) là:
\(x^2=2mx-2m+3\)
\(\Leftrightarrow x^2-2mx+2m-3=0\)
\(\Delta=\left(-2m\right)^2-4\cdot1\cdot\left(2m-3\right)=4m^2-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=4m^2-8m+12=\left(2m\right)^2-2\cdot2m\cdot2+4+8\)
\(\Leftrightarrow\Delta=\left(2m-2\right)^2+8>0\forall m\)
Suy ra: (d) và (P) luôn cắt nhau tại hai điểm phân biệt với mọi m