Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(BEFI\)nội tiếp vì \(\widehat{BEF}=\widehat{BIF}=90^o\).
b) \(\widehat{ADC}\)là góc nội tiếp chắn cung \(\widebat{AC}\).
\(\widehat{CBE}\)là góc nội tiếp chắn cung \(\widebat{CE}\).
\(\widebat{AC}=\widebat{CE}\)suy ra \(\widehat{ADC}=\widehat{CBE}\).
Hoành độ giao điểm tm pt
\(x^2+2x+m-1=0\)
\(\Delta'=1-\left(m-1\right)=1-m\)
Để pt có 2 nghiệm pb khi \(\Delta'>0\Leftrightarrow1-m>0\Leftrightarrow m< 1\)
Vậy với m < 1 pt có 2 điểm pb hay (P) cắt (d) tại 2 điểm pb
Theo Vi et \(\hept{\begin{cases}x_1+x_2=-2\\x_1x_2=m-1\end{cases}}\)
Ta có
\(\left(x_1-x_2\right)\left(x_1^2-x_2^2\right)=x_1^3-x_1x_2^2-x_1^2x_2+x_2^3\)
\(\Rightarrow x_1^3+x_2^3=\left(x_1-x_2\right)^2\left(x_1+x_2\right)+x_1x_2\left(x_1+x_2\right)\)
\(=\left[\left(x_1+x_2\right)^2-4x_1x_2\right]\left(x_1+x_2\right)+x_1x_2\left(x_1+x_2\right)\)
Thay vào ta được \(\left[4-4\left(m-1\right)\right]\left(-2\right)+\left(m-1\right)\left(-2\right)-\left(m-1\right)=4\)
\(\Leftrightarrow-2\left(8-4m\right)-2m+2-m+1=4\)
\(\Leftrightarrow-16+8m-3m=1\Leftrightarrow5m=17\Leftrightarrow m=\frac{17}{5}\)(ktm)
vậy ko có gtri m tm
B C O D M A I
Bài làm
a) Ta có: A thuộc nửa đường tròn tâm O đường kính BC
=> Tam giác ABC vuông tại A
=> \(\widehat{BAC}=90^0\Rightarrow\widehat{ADC}=90^0\)
Lại có: M thuộc nửa đường tròn tâm O đường kính BC
=> Tam giác MBC vuông tại A
=> \(\widehat{BMC}=90^0\Rightarrow\widehat{BMD}=90^0\)
Xét tứ giác AIMD có:
\(\widehat{ADC}=\widehat{DMB}=90^0\)
=> Tứ giác AIMD là tứ giác nội tiếp đường tròn. (đpcm).
b) Xét tam giác BAI và tam giác CMI có:
\(\widehat{BAC}=\widehat{CMB}=90^0\)
\(\widehat{AIB}=\widehat{MIC}\)(đối)
=> Tam giác BAI đồng dạng với tam giác CMI (g-g)
=> \(\frac{AI}{IM}=\frac{BI}{IC}\Rightarrow AI.IC=BI.IM\left(\text{đ}pcm\right)\)
~ Không hiểu gì inbox hỏi mình ~
b: Tọa độ N là:
-2x+4=3x+1 và y=3x+1
=>-5x=-3 và y=3x+1
=>x=3/5 và y=3*3/5+1=9/5+1=14/5
c: tan a=a'=3
nên a=72 độ
A B C O E F K I J H M N S T L
c) AT là đường kính của (O), dễ thấy H,K,T thẳng hàng, gọi TH cắt (O) lần nữa tại S, ta được ^ASH = 900
Ta có A,E,H,F,S cùng thuộc đường tròn đường kính AH, suy ra:
(ES,EF) = (AS,AB) = (SC,SB), (SF,SE) = (BS,BC) do đó \(\Delta\)SFE ~ \(\Delta\)SBC
Vì K,L là trung điểm của BC,EF nên \(\Delta\)SFL ~ \(\Delta\)SBK, suy ra \(\Delta\)SFB ~ \(\Delta\)SLK, (KS,KL) = (BS,BA) (1)
Lại có: \(\frac{MF}{MB}=\frac{HF}{HB}=\frac{HE}{HC}=\frac{NE}{NC}\), \(\Delta\)SEC ~ \(\Delta\)SFB, suy ra \(\Delta\)SMN ~ \(\Delta\)SBC
Tương tự như trên, ta thu được (KS,KI) = (BS,BA) (2)
Từ (1);(2) suy ra K,I,L thẳng hàng. Mặt khác K,L,J thẳng hàng vì chúng cách đều E,F.
Do vậy I,J,K thẳng hàng.