K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

a)Gọi pt đường thẳng d là: \(y=ax+b\left(a\ne0\right)\) 

Vì d có hệ số góc là k \(\Rightarrow a=k\)

Vì (d) đi qua điểm \(A\left(-2;-1\right)\Rightarrow-1=-2k+b\Rightarrow b=\dfrac{1}{2k}\)

\(\Rightarrow\left(d\right):y=kx+\dfrac{1}{2k}\)

b) Vì điểm \(B\in\left(P\right)\Rightarrow y_B=-2x_B^2=-2\Rightarrow B\left(1;-2\right)\)

\(\Rightarrow-2=k+\dfrac{1}{2k}\Leftrightarrow-2=\dfrac{2k^2+1}{2k}\Rightarrow-4k=2k^2+1\)

\(\Rightarrow2k^2+4k+1=0\)

\(\Delta=4^2-4.2=8\)

\(\Rightarrow\left[{}\begin{matrix}k=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-4-\sqrt{8}}{4}=\dfrac{-2-\sqrt{2}}{2}\\k=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-4+\sqrt{8}}{4}=\dfrac{-2+\sqrt{2}}{2}\end{matrix}\right.\)

a: loading...

b: Phương trình OA có dạng là y=ax+b

Theo đề, ta có hệ:

0a+b=0 và a+b=1

=>b=0 và a=1

=>y=x

Vì (d)//OA nên (d): y=x+b

Thay x=2 và y=0 vào (d), ta được:

b+2=0

=>b=-2

=>y=x-2

PTHĐGĐ là:

-x^2-x+2=0

vì a*c<0

nên (P) luôn cắt (d) tại hai điểm phân biệt

30 tháng 11 2021

b. PTHĐGĐ của hai hàm số:

\(x+2=-2x+1\)

\(\Rightarrow x=-\dfrac{1}{3}\)

Thay x vào hs đầu tiên: \(y=-\dfrac{1}{3}+2=\dfrac{5}{3}\)

Tọa độ điểm \(A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\)

30 tháng 11 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+2=-2x+1\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)

22 tháng 12 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x+2=x\\y=x\end{matrix}\right.\Leftrightarrow x=y=-2\)

2 tháng 12 2021

\(b,\text{PT hoành độ giao điểm: }x+2=-2x+1\Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\Leftrightarrow y=\dfrac{5}{3}\Leftrightarrow A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\\ c,\text{Gọi }y=ax+b\left(a\ne0\right)\text{ là đt cần tìm}\\ \Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne1\\-\dfrac{1}{3}a+b=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{7}{3}\end{matrix}\right.\\ \Leftrightarrow y=2x+\dfrac{7}{3}\)