Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tiếp điểm của AB và đường tròn tâm O, bán kính 1 là M, ta có: OM ⊥ AB.
ΔOAB vuông tại O, có OM là đường cao nên MA.MB = MO2 = 1 (hằng số)
Áp dụng bất đẳng thức Cô-si ta có:
MA + MB ≥ 2√MA.MB = 2. √1 = 2
Dấu « = » xảy ra khi MA = MB = 1.
Khi đó OA = √(MA2 + MO2) = √2 ; OB = √(OM2 + MB2) = √2.
Mà A, B nằm trên tia Ox và Oy nên A(√2; 0); B(0; √2)
Vậy tọa độ là A(√2, 0) và B(0, √2).
Ta có : HA.HB=OH²=1 (không đổi).
và AB=HA+HB ≥ 2√(HA.HB) = 2.√OH² = 2.
-> AB ≥ 2.
Vậy AB có độ dài nhỏ nhất là 2 khi HA=HB
Khi đó tg OHB và OHA vuông cân và có cạnh góc vuông = 1.
suy ra OA = OB =√2.
Vậy đoạn AB nhỏ nhất khi A(√2;0) B(0;√2).
Ta có : HA.HB=OH²=1 (không đổi).
và AB=HA+HB ≥ 2√(HA.HB) = 2.√OH² = 2.
-> AB ≥ 2.
Vậy AB có độ dài nhỏ nhất là 2 khi HA=HB
Khi đó tg OHB và OHA vuông cân và có cạnh góc vuông = 1.
suy ra OA = OB =√2.
Vậy đoạn AB nhỏ nhất khi A(√2;0) B(0;√2).
tick cho mk nha
Ta có: 2SOAB = AB.OH = AB (vì OH = 1).
Vậy diện tích ∆OAB nhỏ nhất khi AB có độ dài ngắn nhất.
Vì AB = AH + HB mà AH.HB = OH2 = 1 nên AB có giá trị nhỏ nhất khi AH = HB tức ∆OAB vuông cân: OA = OB và
AB = 2AH = 2OH = 2.
AB2 = 4 = 2OA2 = 2OH = OA = OB = √2.
Khi đó tọa độ của A, B là A(√2; 0) và B(0; √2).
AB tiếp xúc (O) tại H
=>OH vuông góc AB và OH=R=1
ΔOAB vuông tại O nên 1/OH^2=1/OA^2+1/OB^2
=>1/OA^2+1/OB^2=1
\(\dfrac{1}{OA^2}+\dfrac{1}{OB^2}>=\dfrac{2}{OA\cdot OB}\)
=>OA*OB>=2
=>\(S_{OAB}>=1\)
Dấu = xảy ra khi OA=OB=căn 2
Đáp án B
Do đường tròn (C) tiếp xúc với đường thẳng AB tại B và tiếp xúc với đường thẳng AC tại C
Nên tam giác ABC cân tại A
tâm I của (C) thuộc Oy nên I(0; y0)
Do:
Mặc khác:
Vậy phương trình của là:
Có \(d_{\left(O;AB\right)}=R=1\)
Áp dụng hệ thức lượng có:
\(d_{\left(O;AB\right)}.AB=OB.OA\)
\(\Leftrightarrow AB=OB.OA\)
\(\Leftrightarrow AB\le\dfrac{OB^2+OA^2}{2}=\dfrac{AB^2}{2}\)
\(\Leftrightarrow AB^2-2AB\ge0\)\(\Rightarrow AB\ge2\)
Vậy \(AB_{min}=2\) khi \(\left\{{}\begin{matrix}OA=OB\\OA.OB=2\end{matrix}\right.\)\(\Leftrightarrow a=b=\sqrt{2}\)