Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x.\left(y+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=-1\end{cases}}}\)
b) \(\left(x-2\right).y=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\y=0\end{cases}}}\)
c) \(\left(x+2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
a, x.(y+1)=0
=> x=0
hoặc y+1=0=> y=-1
b,(x-2).y=0
=> x-2=0=> x=2
hoặc y=0
c,nhận xét ta thấy (x+2)2 >=0
và (y-3)2>= 0
nên (x+2)2+(y-3)2>=0
dấu bằng xảy ra khi và chỉ khi
x+2=0=> x=-2
và y-3=0=> y=3
trên mặt phẳng tọa độ Oxy, tọa độ của điểm M(x; y) phải thỏa mãn điều kiện gì để hoành độ bằng 2?
Trả lời:
x=2
mk ko chắc lắm
ta có
\(x^2+y^2-2x+4y=0\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=5\)
Vậy tập hợp các điểm thỏa mãn phương trình trên là đường tròn tâm I( 1,-2) bán kính \(\sqrt{5}\)
Ta có: (xo + 4)2 + (yo - 2)2 = 0
=> (xo + 4)2 = 0 => xo + 4 = 0
(yo - 2)2 = 0 => yo - 2 = 0
(Vì (xo + 4)2 \(\ge\)0; (yo - 2)2 \(\ge\)0)
Giải ra ta có xo = -4; yo =2
=> a = \(\frac{y}{x}\)=\(\frac{2}{-4}\)= \(\frac{1}{2}\)
Bạn tự vẽ hình nhé