\(M\left(x_M;y_M\right)\) di động sao cho 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2022

Gọi\(M ′ ( x ; y ) . Suy ra −−→ I M = ( − 9 ; − 1 ) , −−→ I M ′ = ( x − 2 ; y − 3 ) .\)

Ta có V(I,−2)(M)=M′⇔−−→IM′=−2−−→IMV(I,−2)(M)=M′⇔IM′→=−2IM→ ⇒{x−2=−2.(−9)y−3=−2.(−1)⇒{x−2=−2.(−9)y−3=−2.(−1) ⇔{x=20y=5⇒M′(20;5)

hỉu ko ?

13 tháng 3 2022

sai hay đúng vậy ?????????

T_T

mog đúng

22 tháng 1 2022

CMR quỹ tích của điểm m là một đường thẳng nhé

15 tháng 4 2017

Bài này giải như số ý, kết luận khác chút.

Phương trình hoành độ giao điểm của (P) và (d) là:

     \(x^2=\left(k-1\right)x+4\)

\(\Leftrightarrow x^2-\left(k-1\right)x-4=0\)

( a = 1; b = - (k-1); c = -4 )

\(\Delta=b^2-4ac\)     

    \(=\left[-\left(k-1\right)\right]^2-4.1.\left(-4\right)\)

    \(=\left(k-1\right)^2+16>0\forall k\)

Vậy: (P) và (d) luôn cắt nhau tại 2 điểm phân biệt

Theo Vi-et ta có: \(\hept{\begin{cases}S=y_1+y_2=-\frac{b}{a}=k-1\\P=y_1y_2=\frac{c}{a}=-4\end{cases}}\)

Ta có: \(y_1+y_2=y_1y_2\)

     \(\Leftrightarrow S=P\)

     \(\Leftrightarrow k-1=-4\)

      \(\Leftrightarrow k=-3\left(TMĐK\right)\)

Vậy: k = -3 là giá trị cần tìm

     

15 tháng 4 2017

Mơn b, Vũ Như Mai

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

PT hoành độ giao điểm:

\(\frac{1}{2}x^2-(2x-m+1)=0\)

\(\Leftrightarrow x^2-4x+2m-2=0(*)\)

Để (P) cắt (d) tại 2 điểm phân biệt thì $(*)$ phải có 2 nghiệm phân biệt.

Điều này xảy ra khi \(\Delta'=4-(2m-2)>0\Leftrightarrow m< 3\)

Khi đó, $x_1,x_2$ sẽ là 2 nghiệm của $(*)$ thỏa mãn:

\(\left\{\begin{matrix} x_1+x_2=4\\ x_1x_2=2m-2\end{matrix}\right.\) (định lý Vi-et)

Ta có:

\(x_1x_2(y_1+y_2)+48=0\)

\(\Leftrightarrow x_1x_2(2x_1-m+1+2x_2-m+1)+48=0\)

\(\Leftrightarrow x_1x_2(x_1+x_2-m+1)+24=0\)

\(\Leftrightarrow (2m-2)(4-m+1)+24=0\)

\(\Leftrightarrow -m^2+6m+7=0\Rightarrow m=7; m=-1\). Kết hợp với đk $m< 3$ suy ra $m=-1$

23 tháng 3 2022

Ta có P = xy = x(k - x) = -x2 + xk

\(-x^2+2x\frac{k}{2}-\frac{k^2}{4}+\frac{k^2}{4}=-\left(x-\frac{k^2}{4}\right)^2+\frac{k^2}{4}\le\frac{k^2}{4}\)

=> \(P_{max}=\frac{k^2}{4}\left(\text{Dấu "=" khi }x=\frac{k^2}{4}\right)\)

Vì tam giác ABC vuông tại C ; đường cao CM=>  \(MC^2=MA.MB\)

\(MC^2=MA\left(AB-MA\right)=-MA^2+9MA\le\frac{81}{4}\)

=> \(MC\le\frac{9}{2}\)

Dấu "=" xảy ra khi MA = MB = 4,5 cm hay M trung điểm BC 

26 tháng 4 2020

Mình nghĩ nên sửa đề y=2(m-1)x-m2+6 và parobol (P)y=x2

a) Với m=3 ta được (d): y=4x-3

Hoành độ giao điểm của đường thẳng (d) và parabol (P0 là nghiệm của phương trình \(x^2=4x-3\)

<=> x2-4x+3=0

<=> x2-3x-x+3=0

<=> x(x-3)-(x-3)=0

<=> (x-3)(x-1)=0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}}\)

Vậy giao điểm của (d) và (P) là A(1;1); B(3;9)

b) Phương trình hoành độ của (d) cắt (P) là nghiệm của phương trình x2-2(m-1)x-m2+6

<=> x2-2(m-1)x+m2-6=0 (1)

<=> (m-1)2-(m2-6)=7-2m

Đường thẳng (d) cắt (P) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 1 nghiệm phân biệt

<=> 7-2m>0

<=> \(m< \frac{7}{2}\)(*)

Gọi x1;x2 là nghiệm của phương trình (1)

Khi đó thoe định lý Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1\cdot x_2+m^2=6\end{cases}}\)

Theo bài ra ta có: \(x_1^2+x_2^2=6\Leftrightarrow x_1+x_2^2+2x_1x_2=16\)

\(4\left(m^2-1\right)-2\left(m^2-6\right)=16\)

<=>2m2-8m=0

<=> m=0 hoặc m=4

m=0 (tmđk (*))

m=4 (ktmđk (*))

Vậy m=0 là giá trị cần tìm

24 tháng 3 2018

Ta có: \(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\x+2\left(3x-2m+1\right)=3m+2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x-4m+2=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x=7m\end{cases}\Leftrightarrow\hept{\begin{cases}y=m+1\\x=m\end{cases}}}\)

Vây với mọi m, hệ phương trình luôn có nghiệm duy nhất (x ; y) = (m ; m + 1)

Độ dài đoạn thẳng OM bằng: \(\sqrt{m^2+\left(m+1\right)^2}=\sqrt{2m^2+2m+1}\)

Để M thuộc đường tròn \(\left(O;\sqrt{5}\right)\) thì \(\sqrt{2m^2+2m+1}=\sqrt{5}\Leftrightarrow2m^2+2m-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)

22 tháng 5 2017
  1. a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6   <=>-m-2-m+6=3  <=>-2m=-1  <=>m=1/2.