Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tam giác ABC đều nên tâm I cũng là trọng tâm tam giác. Suy ra IE=r, IC=2r và
\(CE=\sqrt{IC^2-IE^2}=r\sqrt{3}\Rightarrow AC=2CE=2r\sqrt{3}\)
Diện tích tam giác ABC là
\(S=\frac{1}{2}.3r.2r\sqrt{3}=3r^2\sqrt{3}=9\)
H�nh ?a gi�c TenDaGiac1: DaGiac[A, B, 3] H�nh ?a gi�c TenDaGiac1: DaGiac[A, B, 3] ???ng tr�n f: ???ng tr�n qua D v?i t�m I G�c ?: G�c gi?a A, C, D G�c ?: G�c gi?a A, C, D G�c ?: G�c gi?a A, C, D ?o?n th?ng a: ?o?n th?ng [A, B] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [B, C] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng c: ?o?n th?ng [C, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng d: ?o?n th?ng [C, D] ?o?n th?ng e: ?o?n th?ng [E, B] A = (-1.1, 0.5) A = (-1.1, 0.5) A = (-1.1, 0.5) B = (2.66, 0.5) B = (2.66, 0.5) B = (2.66, 0.5) ?i?m C: DaGiac[A, B, 3] ?i?m C: DaGiac[A, B, 3] ?i?m C: DaGiac[A, B, 3] ?i?m D: Trung ?i?m c?a A, B ?i?m D: Trung ?i?m c?a A, B ?i?m D: Trung ?i?m c?a A, B ?i?m E: Trung ?i?m c?a C, A ?i?m E: Trung ?i?m c?a C, A ?i?m E: Trung ?i?m c?a C, A ?i?m I: Giao ?i?m c?a d, e ?i?m I: Giao ?i?m c?a d, e ?i?m I: Giao ?i?m c?a d, e
Ta có: a→ + a→ = 2a→
Độ dài của vecto a→ + a→ bằng 2 lần độ dài của vecto a→
Hướng của vecto a→ + a→ cùng hướng với vecto a→
Cho tam giác MNP có S = 84; a =13; b = 14; c = 15. Độ dài bán kính đường tròn ngoại tiếp của tam giác trên là?
A. 8,125
B. 130
C. 8
D. 8,5
C nha bn
Theo bất đẳng thức Bunhiacopxki thì
\(\left(ab(2c+a)+bc(2a+b)+ca(2b+c)\right)\left(\dfrac{a^4}{ab(2c+a)}+\dfrac{b^4}{bc(2a+b)}+\dfrac{c^4}{ca(2b+c)}\right)\geq (a^2+b^2+c^2)^2\)
Do đó \(VT\geq \dfrac{(a^2+b^2+c^2)^2}{a^2b+b^2c+c^2a+6abc}\)
Ta có \(3=a+b+c\geq 3\sqrt[3]{abc}, 3(a^2+b^2+c^2)\geq (a+b+c)^2\)
và \(2a^2b\leq a^2b^2+a^2,...\Rightarrow 2(a^2b+b^2c+c^2a)\leq a^2b^2+b^2c^2+c^2a^2+(a^2+b^2+c^2)\)
Mà \(3(a^2b^2+b^2c^2+c^2a^2)\leq (a^2+b^2+c^2)^2\) và \(3(a^2+b^2+c^2)\leq (a^2+b^2+c^2)^2\)
nên ta suy ra đpcm
\(VT=\sqrt{\dfrac{b^2c^2}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{a^2c^2}{b\left(a+b+c\right)+ac}}+\sqrt{\dfrac{a^2b^2}{c\left(a+b+c\right)+ab}}\)
\(VT=\sqrt{\dfrac{b^2c^2}{a^2+ab+ac+bc}}+\sqrt{\dfrac{a^2c^2}{ab+b^2+bc+ca}}+\sqrt{\dfrac{a^2b^2}{ca+bc+c^2+ab}}\)
\(VT=\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{a^2c^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(c+b\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{bc}{a+b}+\dfrac{bc}{a+c}}{2}\\\sqrt{\dfrac{a^2c^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(c+b\right)}}\le\dfrac{\dfrac{ab}{c+a}+\dfrac{ab}{c+b}}{2}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ca}{b+c}+\dfrac{ab}{b+c}\right)+\left(\dfrac{bc}{c+a}+\dfrac{ab}{c+a}\right)}{2}\)
\(\Rightarrow VT\le\dfrac{\left[\dfrac{c\left(a+b\right)}{a+b}\right]+\left[\dfrac{a\left(b+c\right)}{b+c}\right]+\left[\dfrac{b\left(c+a\right)}{c+a}\right]}{2}\)
\(\Rightarrow VT\le\dfrac{a+b+c}{2}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ac}{\sqrt{b+ca}}+\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)
A(2;-3) nha bạn