Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\overrightarrow{MN}-\overrightarrow{MP}=\overrightarrow{PN}=(x_N-x_P, y_N-y_P)=(4, -3)$
Tọa độ M : \(\left\{{}\begin{matrix}x_M=\frac{x_A+x_B}{2}=\frac{1+3}{2}=2\\y_M=\frac{y_A+y_B}{2}=\frac{-5+0}{2}=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow M\left(2;-\frac{5}{2}\right)\)
Tọa độ N: \(\left\{{}\begin{matrix}x_N=\frac{x_A+x_C}{2}=\frac{1-3}{2}=-1\\y_N=\frac{y_A+y_C}{2}=\frac{-5+4}{2}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow N\left(-1;-\frac{1}{2}\right)\)
\(\Rightarrow\overrightarrow{MN}=\left(-1-2;-\frac{1}{2}+\frac{5}{2}\right)=\left(-3;2\right)\)
Gọi \(M\left(a;b\right)\)
\(\Rightarrow\overrightarrow{MB}=\left(2-a;3-b\right)\Rightarrow2\overrightarrow{MB}=\left(4-2a;6-2b\right)\)
\(\overrightarrow{MC}=\left(-1-a;-2-b\right)\Rightarrow3\overrightarrow{MC}=\left(-3-3a;-6-3b\right)\)
\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(1-5a;-5b\right)=\overrightarrow{0}\)
\(\Rightarrow\left\{{}\begin{matrix}1-5a=0\\-5b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{5}\\b=0\end{matrix}\right.\) \(\Rightarrow M\left(\frac{1}{5};0\right)\)
a.
\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{2-4}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{1+5}{2}=3\end{matrix}\right.\)
\(\Rightarrow I\left(-1;3\right)\)
b.
Do C thuộc trục hoành, gọi tọa độ C có dạng \(C\left(c;0\right)\)
Do D thuộc trục tung, gọi tọa độ D có dạng \(D\left(0;d\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c-2;-1\right)\\\overrightarrow{DB}=\left(-4;5-d\right)\Rightarrow2\overrightarrow{DB}=\left(-8;10-2d\right)\end{matrix}\right.\)
Để \(\overrightarrow{AC}=2\overrightarrow{DB}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c-2=-8\\-1=10-2d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=-6\\d=\dfrac{11}{2}\end{matrix}\right.\)
Vậy \(C\left(-6;0\right)\) và \(D\left(0;\dfrac{11}{2}\right)\)
(mk lm câu a theo cái đề bn đã xứa nha )
a) giả sử : \(I\) có tọa độ \(\left(x_I;y_I\right)\)
ta có : \(I\) là trung điểm của \(AB\) \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{2-4}{2}=-1\\y_I=\dfrac{4+2}{2}=3\end{matrix}\right.\)
vậy điểm \(I\) có tọa độ là \(I\left(-1;3\right)\)
theo đề bài ta có : \(\overrightarrow{MA}+\overrightarrow{IB}=\overrightarrow{0}\) (1)
mà \(I\) là trung điểm \(AB\) \(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\) (2)
từ (1) và (2) ta có : \(\overrightarrow{MA}=\overrightarrow{IA}\) \(\Leftrightarrow\) \(M\equiv I\)
vậy \(M\equiv I\) thì ta có : \(\overrightarrow{MA}+\overrightarrow{IB}=\overrightarrow{0}\)
b) (lm theo đề đã sữa)
giả sử : điểm \(N\) có tọa độ là \(\left(x_N;y_N\right)\)
vì gốc \(O\) là trọng tâm của tam giác \(ABN\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x_A+x_B+x_N}{3}=0\\\dfrac{y_A+y_B+y_N}{3}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_A+x_B+x_N=0\\y_A+y_B+y_N=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-4+x_N=0\\4+2+y_N=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_N=2\\y_N=-6\end{matrix}\right.\)
vậy điểm \(N\) có tọa độ là \(N\left(2;-6\right)\) thì gốc \(O\) là trọng tâm của tam giác \(ABN\)
\(\left\{{}\begin{matrix}\overrightarrow{MN}\left(x_N-x_M;y_N-y_M\right)=\left(5-x_M;-3-y_M\right)\\\overrightarrow{MP}\left(x_P-x_M;y_P-y_M\right)=\left(1-x_M;-y_M\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MN}-\overrightarrow{MP}=\left(5-x_M;-3-y_M\right)-\left(1-x_M;-y_M\right)\)
\(=\left(5-x_M-1+x_M;-3-y_M+y_M\right)=\left(4;-3\right)\)