Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo tính chất của hai tiếp tuyến cắt nhau ta có:
BD = BE, CE = CF, AD = AF
Ta có:
AB + AC – BC = (AD + BD) + (AF + FC) – (BE + EC)
= (AD + AF) + (DB – BE) + (FC – EC)
= AD + AF = 2AD.
Vậy 2AD = AB + AC – BC (đpcm)
b) Tương tự ta tìm được các hệ thức:
2BE = BA + BC – AC
2CF = CA + CB – AB
a) Theo tính chất của hai tiếp tuyến cắt nhau ta có:
AD=AF; BD=BE; CF=CE.
Xét vế phải AB+AC-BC=
=(AD+DB)+(AF+FC)-(BE+EC)
=(AD+BE)+(AF+CE)-(BE+EC)
= AD+AF=2AD.
b) Các hệ thức tương tự là:
2BD=BA+BC-AC;
2CF=CA+CB-AB.
Nhận xét. Từ bài toán trên ta có các kết quả sau:
AD=AF=p-a; BD=BE=p-b; CE=CF=p-c
trong đó AB=c; BC=a; CA=b và p là nửa chu vi của tam giác ABC.
a) Theo tính chất của hai tiếp tuyến cắt nhau ta có:
AD=AF; BD=BE; CF=CE.
Xét vế phải AB+AC-BC=
=(AD+DB)+(AF+FC)-(BE+EC)
=(AD+BE)+(AF+CE)-(BE+EC)
= AD+AF=2AD.
b) Các hệ thức tương tự là:
2BD=BA+BC-AC;
2CF=CA+CB-AB.
Nhận xét. Từ bài toán trên ta có các kết quả sau:
AD=AF=p-a; BD=BE=p-b; CE=CF=p-c
trong đó AB=c; BC=a; CA=b và p là nửa chu vi của tam giác ABC.
a, Tam giác ABC ngọi tiếp đường tròn \(\left(O\right)\)nên AB, BC, AC lần lượt là tiếp tuyến tại D, E , F của đường tròn.
Theo tính chất của hai đường tiếp tuyến cắt nhau, ta có:
AD = AF ; DB = BE ; FC = CE
Xét vế phải:
VP = AB + AC - BC
= ( AD + DB ) + ( AF + CF ) - ( BE + CE )
Thay DB = BE , FC = CE vào biểu thức trên, ta được:
VP = ( AD + BE ) + ( AF + CE ) - ( BE + CE )
= AD + BE + AF + CE - BE - CE
= ( AD + AF ) + ( BE - BE ) + ( CE - CE )
= AD + AF
= AD + AD = 2AD
Vậy 2AD = AB + AC - BC
b, Các hệ thức tương tự là:
2BD = BA + BC - AC
2CF = CA + CB - AB
Tương tự ta tìm được các hệ thức:
2BE = BA + BC – AC
2CF = CA + CB – AB
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
BD = BE, CE = CF, AD = AF
Ta có:
AB + AC – BC = (AD + BD) + (AF + FC) – (BE + EC)
= (AD + AF) + (DB – BE) + (FC – EC)
= AD + AF = 2AD.
Vậy 2AD = AB + AC – BC (đpcm)
a: Xet (O) có
ΔACD nội tiếp
AD là đường kính
=>ΔACD vuông tại C
Xét ΔACD vuông tại C và ΔAHB vuông tại H có
góc ADC=góc ABH
=>ΔACD đồng dạng với ΔAHB
=>AC/AH=AD/AB và góc CAD=góc HAB
=>AC*AB=AD*AH và góc CAH=góc BAD
b: Xét tứ giác ABHE có
góc AHB=góc AEB=90 độ
=>ABHE là tứ giác nội tiếp
=>góc AHE=góc ABE
=>góc AHE+góc HAC=90 độ
=>HE vuông góc AC
Xét tứ giác AHFC có
góc AHC=góc AFC=90 độ
=>AHFC là tứ giác nội tiếp
=>góc HFA=góc HCA
=>góc HFA+góc BAD=90 độ
=>HF vuông góc AB
a) Vì tam giác ABC ngoại tiếp (O) ta có:
Tiếp tuyến AD và AF cắt nhau tại A ==>AD=AF
Tương tự, suy ra CE=CF ; BD=BE
Ta có:AB+AC-BC=AD+BD+AF+CF-BE-CE
mà BD=BE; CF=CE
=>AB+AC-BC=AD+AF=2AD(đpcm)
b) Hệ thức khác: 2BD=AB+BC-AC
2CE=BC+AC-AB
Hình đó , quên vẽ :v