Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu ∠(A4) ≠ ∠(B1 ) thì qua A ta vẽ tia Ap sao cho ∠(pAB) = ∠(B1)
Vì đường thẳng c cắt hai đường thẳng Ap và b và trong các góc tạo thành có cặp góc so le trong bằng nhau là: ∠(pAB) = ∠(B1). Do đó, Ap // b ( tính chất hai đường thẳng song song)
Khi đó, qua A, ta có hai đường thẳng a và Ap cùng song song với đường thẳng b (trái với tiên đề Ơ clit về đường thẳng song song).
Kết luận: đường thẳng Ap và đường thẳng a chỉ là một. Nói cách khác, ∠(pAB) = ∠(A4 ) ,từ đó ∠(A4 ) = ∠(B1)
a) ˆB3B3^
b) ˆB2B2^
c) 1800 ; là cặp góc trong cùng phía
d) Bằng cặp góc so le trong ˆB2B2^=ˆA4A4^.
a) \(\widehat{A_1}\)\(=\widehat{B_3}\)(vì là cặp góc so le trong)
b)\(\widehat{A_2}\)\(=\widehat{B_2}\)(vì là cặp góc đồng vị)
c)\(\widehat{B_3}\)\(+\widehat{A_4}\)\(=180^0\)(vì là cặp góc trong cùng phía)
d)\(\widehat{A_2}\)\(=\widehat{B_4}\)(vì là cặp góc cùng bằng \(\widehat{A_4}\) )
Ủng hộ mk nhé!!! ^.^
a) Vì a,b cùng vuông góc với đường thẳng AB nên a // b
b) Vì \(\widehat {{B_1}} = \widehat {{C_2}}( = 40^\circ )\). Mà 2 góc này ở vị trí so le trong nên b // c ( Dấu hiệu nhận biết 2 đường thẳng song song)
c) Vì a // b, b //c nên a // c