Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Tam giác ACC' đồng dạng tam giác ABB'
=> Tam giác AB'C' đồng dạng tam giác ABC
+ Mô tả cách làm:
- Chọn một điểm A cố định bên mép bờ sông bên kia (chẳng hạn như là một thân cây), đặt hai điểm B và B' thẳng hàng với A, điểm B sát mép bờ còn lại và AB chính là khoảng cách cần đo.
- Trên hai đường thẳng vuông góc với AB' tại B và B' lấy C và C' thằng hàng với A.
- Đo độ dài các đoạn BB' = h, BC = a, B'C' = a' ta sẽ tính được đoạn AB.
+ Cách tính AB.
Ta có: BC ⊥ AB’ và B’C’ ⊥ AB’ ⇒ BC // B’C’
ΔAB’C’ có BC // B’C’ (B ∈ AB’, C ∈ AC’)
⇒ (hệ quả định lý Talet)
Ta có hình như sau :
giải :
Ta có:
= mà AB' = x + h nên
= <=> a'x = ax + ah
<=> a'x - ax = ah
<=> x(a' - a) = ah
x=
Vậy khoảng cách AB bằng
Ta có hình như sau :
Giải
Ta có:
= mà AB' = x + h nên
= <=> a'x = ax + ah
<=> a'x - ax = ah
<=> x(a' - a) = ah
x=
Vậy khoảng cách AB bằng
Ta có:
= mà AB' = x + h nên
= <=> a'x = ax + ah
<=> a'x - ax = ah
<=> x(a' - a) = ah
x=
Vậy khoảng cách AB bằng
a) Xét ΔAB'B vuông tại B' và ΔAC'C vuông tại C' có
\(\widehat{BAB'}\) chung
Do đó: ΔAB'B\(\sim\)ΔAC'C(g-g)
Suy ra: \(\dfrac{AB'}{AC'}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AB'}{AC'}=1\)
Suy ra: AB'=AC'
Ta có: AC'=AB'
AB=AC
Do đó: \(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)
Xét ΔAC'B' và ΔABC có
\(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)(cmt)
\(\widehat{C'AB'}\) chung
Do đó: ΔAC'B'\(\sim\)ΔABC(c-g-c)