K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Giải bài 8 trang 132 SGK Toán 8 Tập 2 | Giải toán lớp 8

15 tháng 5 2016

b) Tam giác ACC' đồng dạng tam giác ABB'

=> Tam giác AB'C' đồng dạng tam giác ABC

5 tháng 2 2018

+ Mô tả cách làm:

- Chọn một điểm A cố định bên mép bờ sông bên kia (chẳng hạn như là một thân cây), đặt hai điểm B và B' thẳng hàng với A, điểm B sát mép bờ còn lại và AB chính là khoảng cách cần đo.

- Trên hai đường thẳng vuông góc với AB' tại B và B' lấy C và C' thằng hàng với A.

- Đo độ dài các đoạn BB' = h, BC = a, B'C' = a' ta sẽ tính được đoạn AB.

+ Cách tính AB.

Ta có: BC ⊥ AB’ và B’C’ ⊥ AB’ ⇒ BC // B’C’

ΔAB’C’ có BC // B’C’ (B ∈ AB’, C ∈ AC’)

⇒ Giải bài 12 trang 64 SGK Toán 8 Tập 2 | Giải toán lớp 8 (hệ quả định lý Talet)

Giải bài 12 trang 64 SGK Toán 8 Tập 2 | Giải toán lớp 8

6 tháng 3 2022

giúp với ạ, mình đg cần gấp

 

19 tháng 2 2017

Ta có hình như sau :

giải :

Ta có:

 =  mà AB' = x + h nên 

 =  <=> a'x = ax + ah

<=> a'x - ax = ah

<=> x(a' - a) = ah

x= 

Vậy khoảng cách AB bằng 

19 tháng 2 2017

Ta có hình như sau :

 

Giải

Ta có:

 =  mà AB' = x + h nên 

 =  <=> a'x = ax + ah

<=> a'x - ax = ah

<=> x(a' - a) = ah

x= 

Vậy khoảng cách AB bằng 

22 tháng 4 2017

Ta có:

ABAB′ = BCBC′ mà AB' = x + h nên

xx+h = aa′ <=> a'x = ax + ah

<=> a'x - ax = ah

<=> x(a' - a) = ah

x= aha′−a

Vậy khoảng cách AB bằng

a) Xét ΔAB'B vuông tại B' và ΔAC'C vuông tại C' có 

\(\widehat{BAB'}\) chung

Do đó: ΔAB'B\(\sim\)ΔAC'C(g-g)

Suy ra: \(\dfrac{AB'}{AC'}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AB'}{AC'}=1\)

Suy ra: AB'=AC'

Ta có: AC'=AB'

AB=AC

Do đó: \(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)

Xét ΔAC'B' và ΔABC có 

\(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)(cmt)

\(\widehat{C'AB'}\) chung

Do đó: ΔAC'B'\(\sim\)ΔABC(c-g-c)