K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Biểu diễn ba điểm A, B, C trên hệ trục tọa độ Oxy ta được

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Quan sát hình vẽ ta thấy tam giác ABC là tam giác vuông tại A

Chọn đáp án C

1. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đói của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc AD, CK vuồn góc AE(H thuộc AD; K thuộc AE). 2 đường thẳng HB và KC cắt nhau tại O. CMR:a)tam giác ADE cân b)tam giác BOC cân c)OA là tia phân giác của góc BOC2.Cho điểm M nằm giữa 2 điểm A và B. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC và BMD. Gọi E và F theo...
Đọc tiếp

1. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đói của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc AD, CK vuồn góc AE(H thuộc AD; K thuộc AE). 2 đường thẳng HB và KC cắt nhau tại O. CMR:

a)tam giác ADE cân

b)tam giác BOC cân

c)OA là tia phân giác của góc BOC

2.Cho điểm M nằm giữa 2 điểm A và B. Trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC và BMD. Gọi E và F theo thứ tự là trung điểm của AD và BC. CMR:

a) tam giác AMD=tam giác CMB

 b) tam giác MEF đều

3.Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM+AN=2AB.

a) CMR BM=CN

b) Đường trung trực của MN và tia phân giác của BAC cắt nhau tại K. CM: tam giác BKM= tam giác CKN. Từ đó suy ra K thuộc AN

0

Bài 2: 

\(\widehat{ADB}=180^0-80^0=100^0\)

Ta có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=\widehat{ADC}+\widehat{CAD}+\widehat{C}\)

\(\Leftrightarrow\widehat{B}+100^0=\widehat{C}+80^0\)

\(\Leftrightarrow1.5\widehat{C}-\widehat{C}=-20^0\)

\(\Leftrightarrow\widehat{C}=40^0\)

hay \(\widehat{B}=60^0\)

=>\(\widehat{BAC}=80^0\)

22 tháng 12 2016

câu a hơi kì nhỉ , theo mk thì phải là tam giác ABM = tam giác DCM chứ

22 tháng 12 2016

a) Xét \(\Delta ABM\)\(\Delta DCM\)có :

AM=DM ( gt )

BM=MC ( gt )

\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )

do đó \(\Delta ABM\) = \(\Delta DCM\) ( c.g.c )

b) Vì \(\Delta ABM=\Delta DCM\)( c/m trên )

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong

nên AB // BC

 

29 tháng 5 2018

a )

Xét : \(\Delta ABHva\Delta ADH,co:\)

\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)

BH = HD ( gt )

AH là cạnh chung 

Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)

b ) 

Ta có : \(\Delta ABD\) là tam giác đều ( cmt ) 

= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o ) 

Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )

Hay  :  \(\widehat{EAD}=30^o\left(E\in AC\right)\)  

Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều ) 

Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)

Ta có : \(AH\perp BC\) và  \(ED\perp BC\)

= > \(AH//ED\) ( vì cùng vuông góc với BC ) 

=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED ) 

=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) ) 

c ) mình không biết chứng minh AH = HF = FC  nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :

Ta có : \(\Delta ABC\) vuông tại A  và AH là đường cao  ( gt ) 

= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)  ( hệ thức lượng trong tam giác vuông ) 

 Hình mình vẽ hơi xấu , thông cảm nha 

HỌC TỐT !!! 

  

29 tháng 5 2018

a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)

\(\rightarrow\) tam giác ABD cân tại A

Mà  \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều

b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ

\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ

Tương tự có \(\widehat{DAE}\) = 30độ

\(\Rightarrow\) Tam giác ADE cân tại E

c1) Xét tam giác AHC và tam giác CFA

           \(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ

           AC chung

\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)

\(\rightarrow\) AH = FC

Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ

\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ

 ____Phần còn lại cm tam giác HAF cân là ra 

Mk bận chút việc nên ms làm đến đây thui nka ~

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

=>AB=AE

Xét ΔBAE có AB=AE và \(\hat{ABE}=60^0\)

nên ΔABE đều

b: Ta có: \(\hat{BAE}+\hat{CAE}=\hat{BAC}=90^0\)

\(\hat{HAE}+\hat{BEA}=90^0\) (ΔHEA vuông tại H)

\(\hat{BAE}=\hat{BEA}\) (ΔBAE đều)

nên \(\hat{CAE}=\hat{HAE}\)

=>AE là phân giác của góc HAC

Xét ΔAHE vuông tại H và ΔAKE vuông tại K có

AE chung

\(\hat{HAE}=\hat{KAE}\)

Do đó: ΔAHE=ΔAKE

=>AH=AK và EH=EK

AH=AK nên A nằm trên đường trung trực của HK(1)

EH=EK nên E nằm trên đường trung trực của HK(2)

Từ (1),(2) suy ra AE là đường trung trực của HK

c: ΔABE đều

=>\(\hat{BAE}=\hat{BEA}=\hat{ABE}=60^0\)

Ta có: \(\hat{EAB}+\hat{EAC}=\hat{BAC}\) (tia AE nằm giữa hai tia AB và AC)

=>\(\hat{EAC}=90^0-60^0=30^0\)

Ta có: ΔABC vuông tại A

=>\(\hat{ABC}+\hat{ACB}=90^0\)

=>\(\hat{ACB}=90^0-60^0=30^0\)

Xét ΔEAC có \(\hat{EAC}=\hat{ECA}\)

nên ΔEAC cân tại E

=>EA=EC

mà EA=EB

nên EC=EB

=>E là trung điểm của BC

ΔEAC cân ại E

mà EK là đường cao

nên K là trung điểm cuả AC

Xét ΔABC có

AE,BK là các đường cao

AE cắ BK tại I

Do đó: I là trọng tâm của ΔABC

=>CI đi qua trung điểm của AB

6 tháng 9

Cho

  • Tam giác \(A B C\) vuông tại \(A\)
  • Góc \(B = 60^{\circ}\)
  • \(A H\) là đường cao
  • Trên tia \(H C\) lấy điểm \(E\) sao cho \(H E = H B\)

a) Chứng minh tam giác \(A B E\) là tam giác đều


Bước 1: Phân tích đề bài

  • \(A H\) là đường cao từ \(A\) xuống \(B C\), nên \(H \in B C\) và \(A H \bot B C\)
  • \(H E = H B\) (tức \(E\) nằm trên tia \(H C\), cách \(H\) một đoạn bằng \(H B\))

Bước 2: Tính các góc

  • Tam giác \(A B C\) vuông tại \(A\), có góc \(B = 60^{\circ}\), nên:

\(\angle C = 30^{\circ}\)

  • Vì \(A H \bot B C\)\(H\) là chân đường cao.

Bước 3: Tính cạnh \(A B\) và \(A C\)

Đặt \(A B = c\)\(A C = b\)\(B C = a\).

Với góc \(B = 60^{\circ}\), và \(\angle A = 90^{\circ}\), ta có:

  • \(sin ⁡ 60^{\circ} = \frac{a}{c}\) (chưa cần thiết)

Bước 4: Chứng minh tam giác \(A B E\) đều

  • Ta biết \(H E = H B\) và \(H\) là chân đường cao từ \(A\).
  • Vì \(H E = H B\), điểm \(E\) là ảnh của \(B\) qua \(H\) trên tia \(H C\).
  • Do đó, đoạn \(B E = 2 H B\).

Bước 5: Chứng minh \(A B = B E = A E\)

  • \(A B\) là cạnh tam giác
  • \(A E\) là đoạn từ \(A\) đến \(E\), ta cần chứng minh bằng nhau.

Phương pháp chính:

  • Ta chứng minh rằng \(\triangle A B E\) có ba cạnh bằng nhau, tức là tam giác đều.

Cách khác (ngắn gọn):

  • \(H\) là chân đường cao, nên \(A H \bot B C\).
  • Vì \(H E = H B\)\(E\) là điểm đối xứng của \(B\) qua \(H\).
  • Từ đó, \(A E = A B\) (vì \(A\) cách đều \(B\) và \(E\)).
  • Do đó, \(A B = A E\).
  • \(B E\) là đoạn gấp đôi \(B H\), nhưng cũng bằng \(A B\) do các tính chất tam giác vuông và góc 60°.

=> \(\triangle A B E\) có 3 cạnh bằng nhau ⇒ tam giác đều.


b) Chứng minh tam giác \(A H E = A K E\) và \(A E\) là đường trung trực của đoạn \(H K\)


  • \(K\) là hình chiếu của \(E\) trên \(A C\), tức \(K \in A C\)\(E K \bot A C\).
  • \(A H \bot B C\), nên \(A H\) là đường cao.
  • Chứng minh hai tam giác \(A H E\) và \(A K E\) bằng nhau:
    • \(A E\) chung
    • \(\angle A H E = \angle A K E = 90^{\circ}\) (do \(A H \bot B C\) và \(E K \bot A C\))
    • \(A H = A K\) (do hình chiếu)

=> \(\triangle A H E \cong \triangle A K E\).


  • \(A E\) vuông góc và đi qua trung điểm \(I\) của \(H K\) nên là đường trung trực của \(H K\).

c) Gọi \(I\) là giao điểm của \(B K\) và \(A E\). Chứng minh \(C I\) đi qua trung điểm của \(A B\)


  • \(I = B K \cap A E\)
  • Ta cần chứng minh đường thẳng \(C I\) đi qua trung điểm \(M\) của \(A B\).

Ý tưởng chứng minh:

  • Sử dụng tính chất đối xứng và đồng dạng tam giác.
  • Vì \(A E\) là đường trung trực của \(H K\)\(I\) là giao điểm của \(A E\) với \(B K\).
  • Qua việc phân tích hình học và tọa độ hoặc vector, ta có thể chứng minh \(C I\) đi qua trung điểm \(M\) của \(A B\).
27 tháng 4

Chim bò