K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

giup mik nha mn :(

25 tháng 4 2021

giup mik nha mn :((

 

a: Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔOAC=ΔOBC

=>AC=BC

=>C là trung điểm của AB

Ta có: CA=CB

=>C nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OC là đường trung trực của AB

=>CO\(\perp\)AB

b: Xét ΔOAC và ΔMBC có

CO=CM

\(\widehat{OCA}=\widehat{MCB}=90^0\)

CA=CB

Do đó: ΔOAC=ΔMBC

=>\(\widehat{OAC}=\widehat{MBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên OA//BM

Xét ΔCBO vuông tại C và ΔCAM vuông tại C có

CB=CA

CO=CM

Do đó: ΔCBO=ΔCAM

=>\(\widehat{CBO}=\widehat{CAM}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BO//AM

loading...

a: ΔOAB cân tại O

mà OC là phân giác

nên OC vuông góc AB và C là trung điểm của AB

b: Xét tứ giác OAMB có

C là trung điểm chung của OM và AB

=>OAMB là hình bình hành

=>OA//MB và OB//MA

Sửa đề: OA=OB=OC

a: OB là phân giác của góc AOC

=>\(\hat{AOB}=\hat{BOC}=\frac12\cdot\hat{AOC}=60^0\)

Xét ΔOAB có OA=OB và \(\hat{AOB}=60^0\)

nên ΔOAB đều

=>OA=OB=AB và \(\hat{OAB}=\hat{OBA}=\hat{AOB}=60^0\)

Xét ΔOBC có OB=OC và \(\hat{BOC}=60^0\)

nên ΔBOC đều

=>BO=OC=BC và \(\hat{BOC}=\hat{OBC}=\hat{OCB}=60^0\)

Ta có: \(\hat{AOB}=\hat{OBC}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AO//BC

Ta có: \(\hat{COB}=\hat{ABO}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên OC//AB

b: OA=OB=AB

OB=OC=BC

Do đó: OA=OB=AB=OC=BC

ta có: OA=OC

=>O nằm trên đường trung trực của AC(1)

BA=BC

=>B nằm trên đường trung trực của AC(2)

Từ (1),(2) suy ra OB là đường trung trực của AC

=>OB⊥AC

22 tháng 11 2023

a: Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)'

OC chung

Do đó: ΔOAC=ΔOBC

=>AC=BC và \(\widehat{OAC}=\widehat{OBC}\)

\(\widehat{OAC}+\widehat{xAC}=180^0\)(hai góc kề bù)

\(\widehat{OBC}+\widehat{yBC}=180^0\)(hai góc kề bù)

mà \(\widehat{OAC}=\widehat{OBC}\)

nên \(\widehat{xAC}=\widehat{yBC}\)

b: OA=OB

=>O nằm trên đường trung trực của AB(1)

CA=CB

=>C nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OC là đường trung trực của AB

=>OC\(\perp\)AB

=>Oz\(\perp\)AB